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ABSTRACT. This paper proposes specific probabilistic approaches to address several major
problems associated with the representation of tactical nuclear warfare at the theater level.

The first problem is identifying the locations of small units (potential nuclear targets) such as
companies or battalions within theater-level conventional scenarios or model outputs. Current
approaches to identifying these small unit locations fail to take into account the variability that
might be realized in any specific battle. A two-dimensional multivariate model is proposed to
describe uncertainty about the precise location of the potential targets. As targets may be
aggregated and/or precluded from fires due to collateral damage and other constraints, the
multivariate location model is suitably modified to indicate the two-dimensional distributions of
possible weapon aimpoint locations. The research also incorporates probability models of target
acquisition and target location error.

The second major problem lies in the interface between theater-level nuclear analyses and
conventional battle expected value simulations. An expected value model demands a single input to
represent the effect of a nuclear exchange. However, a theater-level nuclear exchange may generate
many different outcomes which will have significantly different effects. We use the probability
models to estimate sets of possible nuclear exchange outcomes, which can be partitioned into sets
which we expect to have significantly different effects on the conventional battle. The expected value
simulation can be run for each set of outcomes, to capture the variability inherent in the nuclear
exchange and predict its effect upon the conventional battle.

The probability models described in this paper may be used as a research tool to estimate the
sensitivity of exchange outcomes to various data and assumptions, as a surrogate for detailed.
complex simulation models; or as an estimator of the sample space of all possible outcomes of a
theater nuclear exchange.

THE RESEARCH SPONSOR was the Director, US Army Concepts Analysis Agency (CAA).

THE OBJECTIVE OF THE RESEARCH was to develop a probability model for theater-level
tactical nuclear warfare based on a probabilistic force array.

THE MAIN ASSUMPTIONS used in this research were:

(1) The uncertainty about the actual location of units on some future battlefield can be
described using multinormal probability distributions, dependent between all X coordinates and
between all Y coordinates for all units, with the X coordinates assumed to be mutually independent
of all Y coordinates.

(2) Aggregation and bonus effects can be evaluated for pairs of units only.

(3) Various mixing parameters can be approximated as constants.

(4) DGZ shifts due to preclusion can be modeled from the single preclusion area most likely to
cause a shift.

(5) Distributions can be evaluated using standard approximations.
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(6) Assumptions standard in nuclear effects models relating to the nuclear weapon and the
target can be used. These assumptions are detailed within the text.

(7) The unit defeat probabilities can be evaluated independently.

THE BASIC APPROACH used in this research was to use multivariate probability distributions to
describe uncertainty about the precise location of the potential targets. As targets may De
aggregated and/or precluded from fires due to collateral damage and other constraints, the
multivariate location model is suitably modified to indicate the two-dimensional distributions of
possible weapon aimpoint locations. The research also incorporates probability models of target
acquisition and target location error. From these distributions, it is possible to determine the
probability that a targetable subunit (such as a company or battery) can be defeated and the space
of all possible outcomes of a tactical nuclear exchange (in terms of the defeat or failure to defeat a
unit) can be specified.

THE PRINCIPAL FINDING of the research is that is is possible to develop an analytic probability
model of a theater-level tactical nuclear exchange.

THE RESEARCH WAS PERFORMED BY MAJ Mark A. Youngren.

COMMENTS AND QUESTIONS may be sent to the Director, US Army Concepts Analysis Agency.
ATTN: CSCA-RQR, 5120 Woodmont Avenue, Bethesda, MD 20814-2797.




CAA-RP-89-3

CONTENTS

CHAPTER

1

INTRODUCTION

Section I. BACKGROUND

Modeling Nuclear Warfare at the Theater Level

Nuclear Force Arrays

Current Arraying Practice

Our Approach

Determining the Impact of the Probabilistic Force Arrays
on the Nuclear Exchange

Section II. THE MODEL

Overview

Uses of the Model

(1) Using the Possible Outcomes to Handle Uncertainty
in Expected Value Modeling

(2) Use as a Research Tool Used to Determine the Sensitivity
of Qutcomes

{3) Use as a Surrogate for Detailed Simulation Models
such as NUFAM III

Section III. MODELING THE ACQUISI'TION AND MOVEMENT
OF TARGET UNITS

The Target Acquisition Process

The Movement State of the Relocatable Target

Representing the Target Acquisition and Movement Processes

Section IV. NOTATION AND TARGET GEOMETRY
Target and Weapon Radii

Preciusion

Aggregation

Combining Preclusion and Aggregation

Section V. THE UNIT LOCATION MODEL
Introduction

The Distributional Form

Sources of Data for Array Locations

The NUFAM-GAP Workstation
Assumptions

DETERMINING THE DISTRIBUTION OF THE DESIRED GROUND ZERO

Section I. CHAPTER SUMMARY
Summary of Contents

Summary of the Logic

Summary of the Results

Page

[ S R R A

v




CAA-RP-89-3

CHAPTER

Section II. DISTRIBUTIONS AND RESULTS

The Marginal Distribution of the Actual Unit Locations

Determining the Marginal Distribution of the Perceived Unit Location
Determining the Distribution of Distance Between Targets

Modeling Aggregated Target DGZ’s

Modeling Preclusion Given No Aggregation

Modeling Preclusion Given Aggregation

Determining the Marginal Distribution of the Actual Ground Zero (AGZ)

Alternative Calculations

MODELING THE IMPACT OF THE PROBABILISTIC ARRAYS
ON THE NUCLEAR EXCHANGE

Section 1. CHAPTER SUMMARY
Summary of Contents

Summary of the Logic

Summary of the Results

Section !I. DERIVATIONS AND RESULTS
Introduction
Point Targets
Evaluating Joint Probabilities
Determining the Probabilities Related to Location
Determining the Probability that a Target is Available for Engagement
Deteruiining the Probabilities of Conditional Defeat
Determining the Probability of Defeat
Allocating Weapons to Targets
Formulas for the Probability of Defeat, Given Weapon W
Estimating the Probability that a Uait is Defeated
Bonus Effects
Estimating the Sample Space of All Possible Outcomes

of a Theater Nuclear Exchange

SUMMARY

Implementation
Conclusions

APPENDIX

viti

A

B

REFERENCES
PROBABILITY DEFINITIONS

Probabilities related to target acquisition and movement
Probabilities related to location

Probabilities related to weapon allocation

Probabilities of engagement

Probabilities of conditional defeat

Probabilities of defeat

Page

33
33
33
33
34
36
38
41
41

43




CAA-RP-39-3

APPENDIX Page

C MULTINORMAL DISTRIBUTIONS

2

Section I. UPDATING THE MULTIVARIATE DISTRIBUTIONS
FOR UNIT 1.OCATIONS

[
—

The Multivariate Normal Distribution
Multivariate Wishart Distribution

Obtaining the Posterior Distribution

Obtaining the Prior Distribution Without Data
Obtaining the Prior Distribution With Data

[ IR S |
—— = —

Section II. GENERATING MULTINORMAL PSEUDORANDOM VARIATES

[
—

Procedure

Algorithm LTM

Generating Multinormal Pseudorandom Variates
Algorithm MN1

®

D DISTRIBUTIONS FOR QUADRATIC FORMS IN NORMAL VARIABLES

]
—

Notation

The Central Case

The Non-Central Case

A Less Accurate but Simpler Approximation
Evaluating Bivariate Normal CDFs

] i [} i

Doouoo 9o o0 O a0 Q

E MONTE CARLO EXPERIMENTS

0

F  GENERATING REALIZATIONS

o
-

Generating Multinormal Pseudorandom Variables
Generating Nuclear Laydown Realizations for FORCEM

s
—

G EXAMPLE OF AN ANALYTIC SOLUTION

H
[

Section I - UPDATING THE MULTINORMAL DISTRIBUTION
Updating the X-dimension Variance-Covariance Matrix L«
Updating the Y-dimension Variance-Covariance Matrix Dy

i
et et

Section II - SINGLE UNIT , SINGLE PRECLUSION AREA
Given information
Computing the necessary constants
Computing the distributions from target unit #1 to preclusion area #1
Computing the probabilities of preclusion and shift
(unit #1 from preclusion area #1)
Computing the AGZ and conditional defeat distributions
Computing the defeat distributions for target unit #1 as an only target

'
— e s

QO QO a0 @

[
—_—




CAA-RP-89-3

APPENDIX

Section III - SECOND UNIT, SECOND PRECLUSION AREA

Given information

ComputiLy the necessary constants

Computing the distributions of the distance from preclusion areas 1 and 2

Computing the distributions of the distance between target units 1 and 2

Computing the aggregation and engagement probabilities

Computing the AGZ and conditional defeat distributions of Unit #2
engaged as a single target

Section IV - COMPUTING THE DGZ AND DISTRIBUTIONS OF
THE AGGREGATE TARGET
Computing o
Weapon #1
(1) Computing the distributions between DGZ2 and preclusion areas 1 and 2
(2) Computing the probability of a DGZ, shift
Weapon #?2
{1) Computing the distributions between DGZ% and preclusion areas | and 2
(2) Computing the probability of a DGZ2 shift’
Computing the AGZ and conditional defeat distributions
of the aggregate target
Computing the probabilities of engagement of the aggregate target

SECTION V. COMPUTING THE PROBABILITIES OF DEFEAT
Computing the probabilities of defeat of target unit #1
Computing the probabilities of defeat of target unit #2

H EXAMPLE OF Prounp PARAMETER ESTIMATION

Section I - COMPUTING THE RELEVANT PROBABILITIES
Given Information

Computing the Probabilities

Computing the Conditional Probabilities of Engagement

Section I - ESTABLISHING TRE ALGORITHM FOR PARAMETER
ESTIMATION

Theory
ALGORITHM

Section III - A PROGRAM FOR MONTE CARLO Poound ESTIMATION
The Example Logic

SIMSCRIPT Code used to Generate Example

Input Data

Output

Section [V - CALCULATING PROBABILITIES OF ENGAGEMENT
AND DEFEAT

Probabilities of Engagement

Probabilities of Defeat

I DISTRIBUTION

Page

D00

]

» [}

1

!

[}

DEANDENEDEARDEN!

)

1
-1

2 Qoo O

t

T mom

o

T m I

o E T

—
)
—




CAA-RP-89-3

FIGURES
FIGURE Page

1 Example of a Template for a Red Division 5

2 Example of a Template for a Red Division with Isoprobability Contours 5

3 Orientation of the X and Y axis for a Division Template 6

4 Possible Target Acquisition Sequence 14
5 Overlap of Weapon and Unit Circles 16
6  Areas A, and A, of the Overlap 16
7 Shift in DGZ Due to Preclusion 18
8  Target Coverage Using a Shifted DGZ 19
9 Location of DGZ Given Aggregation (Without Preclusion Shift) 20
10 Feasible Area for DGZ Given Aggregation 20
11  Logic for Determining the Engagement Type for Unit : 29
12 Logic for Determining the Engagement Type for Uni* i (Continued) 30
13 Shift in the DGZ Due to Preclusion (Single Target) 37
14  Shift in the DGZ Due to Preclusion (Aggregate Target) 38
15 Logic for Determining the Defeat Probabilities for Unit i 46

Il




CAA-RP-89-3

CHAPTER 1
INTRODUCTION

Section I. BACKGRQUND

Modeling Nuclear Warfare at the Theater Level

The US Army Concepts Analysis Agency (CAA) has the responsibility of conducting analysis of
issues of concern to the Department of the Army at the theater level. One such issue is the possible
employment of tactical nuclear weapons - that is, nuclear weapons employed by combined forces

against military targets within a theater.

The number of nuclear weapons available for employment within a theater is relatively small,
vet the potential impact of each round is great. As a result, tactical nuclear weapon employment is
modeled at a round-by-round and target-by-target degree of resolution. Furthermore, the use of
tactical nuclear weapons may be greatly influenced by the locations of potential targets. The use of
tactical nuclear weapons is often precluded to avoid damage or injury to nearby civilian populations
and friendly troops. Targets may also be aggregated in order to damage two or more units with a
single weapon. Potential nuclear targets include units a small as companies, batteries and individnal
missile launchers, thus a tactical nuclear model will need to have input relating to the characteristics

and precise locations of these potential target units.

Models of tactical nuclear warfare within a theater rely on output from a theater-level
conventional model or scenario to define the battlefield situation at the time at which nuclear
weapons may be employed. Theater-level models and scenarios generally model units only at the
division level or higher, often in fairly large discrete time steps (12 to 24 hours). As a result. the
locations and actions of potential target units will not be represented in the outputs from these
sources. Even if model or scenario results were available that tracked units at the required degree of
resolution in time and space, the locations and actions of small units could easily vary within the
same overall theater scenario. Therefore, we must regard the detailed actions and locations of
potential target units as not merely unknown (given typical theater scenarios), but uncertain: an
analysis highly dependent upon unit locations (such as that based on tactical nuclear models) will

need to consider the effects of such uncertainty.




CAA-RP-89-3

This paper proposes a model for representing a laydown of nuclear weapons at the theater level.
it begins by Jeveloping probability models to reflect the uncertainty inherent in representations of
the activities and locations of potential nuclear targets in the context of any general theater scenario.
These models can provide an analytic or Monte Carlo solution to the effect of a nuclear exchange
upon all potential targets on both sides. This soluticn may be used directly to support analyses
related to the use of nuclear weapons in a theater, or it may be used to determine the possible

outcomes of an exchange to construct inputs to a theater-level conventional simulation.

Several models of conventional warfare exist at the theater level. Two models used at CAA are
called the Concept Evaluation Model (CEM) and the Force Evaluation Model (FORCEM).
FORCEM has several important characteristics it shares with other theater-level simulations. First.
it is a low resolution model, representing combat forces at the division and higher level. This level of
resolution is common for theater-level models and scenarios. Second, it is a deterministic. expected
value model. As an expected value model, it requires a single input data set, which represents the
mean or expected value of various stochastic processes, and produces a single output set.
Unfortunately, an expected value model does not produce an expected value output: the use of this
type of model creates special concerns in properly handling the uncertainty inherent in the input
data. In this paper, we assume that we have FORCEM outputs available that define the initial
theater-level situation af the time that nuclear weapons may be employed. However, the techniques

presented herein may be used with any general theater-level model or scenario.
Nuclear Force Arrays

A nuclear force array is a set of coordinates specifying the actual locations of combat units that
may be potential nuclear targets within some theater-level model or scenario. A unil is a military
organization composed of personnel and equipment that may be killed or destroyed by nuclear
weapons. Nuclear targets are units that are planned for engagement by tactical nuclear weapons.
Relocatable targets are units which have the capability to move during the scenario of interest
(although they may ot may not retain mission capability during movement). Almost all of the
combet units are potential relocatable targets. As a consequence of this movement capability, units
do not remain in a static array; the force array will change over time in accordance with the overall

theater-level model or scenario.
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When a combat simulation is run at a resolution sufficient to represent each potentiai nuclear
target unit, it is important to correctly array the various units at the start of the simulation. We
normally assume that tactical nuclear weapons will be employed only after some period of theater-
level conventional combat. Thus the starting point for a nuclear simulation will be at some point in
time after the initiation of conflict. Starting positions for the nuclear simulation, representing unit
locations at some point during a conventional conflict, may be generated from a large-scale
conventional simulation, such as a theater combat model (e.g., FORCEM), or an established
scenario (which itself is frequently generated from a wargame or larger simulation). In either case,
the model output or scenario will frequently only specify the center of mass location of the major
combat formations (such as divisions), without disaggregation into smaller units (such as maneuver

and logistics companies).

Even in situations where the unit locations are specified to the degree of resolution desired. it is
important to realize that the locations of combat units in some future conflict cannot be known with
certainty (if we omit the trivial case of current peacetime deployment). As a result, any specific
model output or scenario specification must be regarded as a single realization of the set of random

variables describing all possible locations of the combat units.

Tactical nuclear weapons are employed against military targets in a theater of war to achieve a
tactical or operational objective. Tactical nuclear weapons, particularly small yield weapons fired by
artillery, may be employed against mobile units as small as a maneuver company, artillery firing
section, or missile launcher. On a theater scale, the number of such potential targets is on the order
of 10%. Most theater-level models, such as FORCEM, and theater-level scenarios provide locations
only for division-sized or specialized units. The generation of company-level locations across the

theater, given typical theater scenario resolution, is a formidable task.
Current Arraying Practice

Currently, two methods are employed to specify the location of smaller level units prior to
running a high resolution nuclear simulation. The first method is to have a subject matter expert
(such as a military officer with doctrinal knowledge and field experience) manually array the units
on a map. Although this method generates an array that is realistic, it may take an officer several
months, working full time, to generate an array for a two-sided theater exchange: Also, this array is

only a single realization of a set of random variables, as any other equally qualified officer (or even
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the same officer at a different time) will generate an array that is most likely similar but

nevertheless different in many specific details.

Another approach that is currently used is to generate a template consisting of stylized unit
locations based on doctrine. This template will specify a doctrinally correct set of relationships
between units, but is sure to differ from any specific array that may be generated for actual forces

deployed on actual terrain.

Both approaches fail to take into account the variations that will occur between any specific
force arrays that may be generated (or which may occur in some future conflict). The first method
permits alternative arrays to be generated, but this can be done only with great time and expense,
and requires separate runs of a simulation to account for the impact of the array variations. The
second (templating) method cannot be used to generate any different arrays (unless doctrine or the

forces represented are changed).

Our Approach

It is our thesis that uncertainty may only properly be described using a probability distribution.
Since the unit locations in some future conflict are unknown, we must specify a probability
distribution to capture that uncertainty. Before manual arraying, a subject matter expert will
explicitly or implicitly examine the force structure, mission, and doctrine of each side to establish a
doctrinal relationship among the units on each side. This set of doctrinal relationships is basically
the same as the template that might be developed for that force. The subject matter expert will then
shift the units from these doctrinal locations based on the terrain, unit missions, etc. Shifts in one

unit will likely cause shifts in adjacent unit locations to avoid ‘‘gaps’ and ‘“‘overlaps.”

Our probability model is based on this representation of an expert arrayer. We begin with a
doctrinal template that establishes the most likely location for the unit. This template specifies the
mean vectors for the coordinates of the units in the array. Shifts from this most likely value based
on the terrain, unit missions, etc. are accounted for through variances for each unit location. Shifts
in adjacent unit values are accounted for using covariances for each pair of units. A multinormal
distribution for the distances across the width of the template (generally parallel to the FLOT) and
another multinormal distribution for the depth of the template (generally perpendicular to the
FLOT) with the appropriate means, variances, and covariances is used to describe our uncertainty
about the unit locations. Details pertaining to this model are given in Section V.

4
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An example of a template for a notional Red division is shown in Figure 1, below. The template

overlaid with isoprobability contours is shown in Figure 2.
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Figure 1. Example of a Template for a Red Division
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Figure 2. Example of a Template for a Red Division with Isoprobability Contours
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Templates are established for each unit that is represented in the theater model or scemario
(usually divisions). Since the templates are based on doctrine, many units will share the same
template. The coordinates for each unit subordinate to the templated unit are specified relative to
the center of mass (or for convenience the front right corner) of the larger unit; these relative
coordinates can easily be converted to terrain based coordinates if desired. The X-axis is therefore
across the front of the unit (generally parallel to the FLOT if the unit is in the front lines) and the
Y-axis is perpendicular to the front of the unit (generally measured as a distance from the FLOT if

the unit is in the front lines) (Figure 3).

Y
A

XX

Division
area

Front
* - X

Figure 3. Orientation of the X and Y axis for a Division Template

The parameters of the prior distribution for all units will be based on expert opinion. Posterior
distributions for the parameters will be based on data collected from a system known as the Nuclear
Fire Planning and Assessment Model Graphical Analysis Package (NUFAM-GAP). The procedure

for doing this is discussed in more detail in Section V.
Determining the Impact of the Probabilistic Force Arrays on the Nuclear Ezchange

The actual and perceived locations of acquired units, relative to each other and relative to areas
from which nuclear weapons are precluded, will dictate what nuclear weapons may be employed to
engage the potential target units. Nuclear weapons will be employed as dictated by the operational
and strategic situation, with the intent of causing a sudden and dramatic change in the conduct of
the battle. The commander of the forces on a side will have an overall objective (such as stabilizing

the Forward Line of Own Troops - FLOT - in the defense or achieving a breakthrough in the
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offense) that will necessit2te the use of nuclear weapons. In order to meet this objective, the
commander will specify the defeat criteria against each unit - that is, the necessary degree of
damage to be achieved against each unit to meet his objective. The defeat criteria will differ from
unit to unit depending upon the unit mission, the posture, the equipment, etc. The criteria applied
to larger units (such as divisions) will frequently focus fires on critical units. For example, the defeat
criteria for a unit might be achieving a latent lethal dose (about 450 rad) against at least 50% of the
personnel in the unit. The defeat criteria for a particular division might be to defeat at least 50% of

the infantry units or at least 40% of the armor units in the division.

Nuclear weapons will be employed to maximize the probability of defeating as many units as
possible. Planners will specify a desired ground zero (DGZ) for each weapon (an aimpoint) that will
meet the defeat criteria for one or more units subject to any constraints placed upon the
employment of the weapons. National policy for nuclear weapons employment will normally
preclude the use of the weapons in areas that will cause civilian casualties, casualties to friendly
troops, etc. We refer to these policy constraints as preclusion and an area within which a nuclear
weapon cannot be employed as a preclusion area. Ideally, the DGZ for a weapon employed against a
single target unit would be the center of mass of that unit. The existence of preclusion areas will
often force the planner to shift the DGZ away from the unit center of mass. The DGZ may also be
shifted to cause the weapon to cover two or more units with effects sufficient to meet the defeat
criteria simultaneously. We refer to combining target units into a single target for a weapon as

target aggregation or simply aggregation.

The closer units are together, the more likely they can be engaged as an aggregate target. The
closer they are to preclusion areas, the more likely they will be engaged with a shifted DGZ or not
engaged at all. Since the locations (both actual and perceived) of the units are random, limitations
on the type and locations of the weapons that may be employed resulting from preclusion and
aggregation, and the effects that can be realized against the targets, are also random. We can
combine our distributions for each unit location, errors in target location and weapon delivery. and
the possibilities of aggregation and preclusion, into a probability for each unit that it may be
defeated with a particular nuclear weapon. The impact of the defeat or failure to defeat each unit
can be combined across the theater to determine the possible outcomes of a theater-level exchange of

tactical nuclear weapons.
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Section II. THE MODEL
Overview

The model developed within this paper uses the probabilistic force arrays as a fundamental
building block to determining the possible outcomes of a tactical nuclear exchange. We start with
the idea of using a distribution to describe the actual ground location of a targetable unit at the
time that nuclear weapons may be employed. Targeting will actually be performed upon units that
are found by some sensor, identified and retained as valid targets (we use the term available to
describe units meeting these criteria) through some target acquisition process. Associated with the
acquisition means is some random target location error, which we describe with a distribution
ucpendent on tie numbers and types of sensors available for target acquisition. The location actually
used for targeting is the perceived location; the distribution of the perceived location is found by
combining the distribution of the actual location with the appropriate target location error

distribution.

If a targetable unit is available, we consider it as a possible target for each weapon that is
potentially available that can be used against that type of target (at a later step in the process, we
will allocate available weapons against potential targets). If there were no constraints upon the use
of tactical nuclear weapons and we used a weapon for each target, each weapon would be aimed at
the center of the associated perceived target location. However, targets may be aggregated; that is, a
single weapon may be used against two or more targets. In this model, we consider only aggregate
target pairs; it is relatively unusual in practice for 3 or more targeis to be available for aggregation.
If a weapon is used against two targets, the aimpoint (DGZ) will be directed against a point

between the two targets.

Nuclear weapons use may also be constrained by requiring that they avoid (preclude) creating
effects within preclusion areas. If these constraints are applicable, an available target may be
precluded from fire with a particular weapon if there is no way it can be engaged without causing
unacceptable damage in one or more preclusion areas. In other cases, it may be possible to engage
the target without causing unacceptable damage in any preclusion areas by shifting the DGZ away
from target center (or directly between two targets if aggregated) in a direction away from the

closest preclusion area.
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Thus we have 5 possible outcomes for each unit / weapon pair. An available unit may be:
(1) Engaged as a single target without a DGZ shift caused by preclusion,
(2) Engaged as a single target with a DGZ shift caused by preclusion,
(3) Engaged as part of an aggregate target pair without a DGZ shift caused by preclusion,
(4) Engaged as part of an aggregate target pair with a DGZ shift caused by preclusion, or
(5) Preciuded from engagement.
These outcomes all have an associated probabilities of occurrence based on the distribution of the

perceived target locations and their separation from various preclusion areas.

Given a set of available weapons, range and target preference considerations, it is possible to
determine the set of weapons that may be fired at some subset of the available nonprecluded targets.
If we look at all of the possible available nonprecluded target sets, we can determine the probability

that a given weapon type may be used against each unit.

If a particular weapon type is fired at a unit, the weapon will be aimed at the DGZ (which may
be shifted as explained previously). Each weapon type has an associated random accuracy; thus the
distribution of the point of detonation (Actual Ground Zero or AGZ) will be a combination of the
distributions for the perceived target location and the weapon accuricy. We end up with a
distribution for the AGZ associated with each of the four engagement possibilities where weapons are
fired: from this we can compute the distribution of the distance between the AGZ and the actual
unit location (from which we can determine the probability that the unit is defeated using the
weapon) for each unit, each weapon, and each engagement possibility. We can combine across the
weapons and engagement possibilities to get the probability of defeat for each unit represented in

our model.

The paper simply derives the distributions and probabilities associated with each step of the
process described above. We start with a set of targetable units whose locations are described using
multivariate probability distributions, and end up with a probability of defeating each unit in the
set. From this, we can determine all possible outcomes of any nuclear exchange with the associated
probabilities. The paper is divided into four major parts. The first part (Chapter 1) provides
background and some of the details behind the scenario. Also discussed in Chapter 1 is the model
used to determine unit availability probabilities. The second part (Chapter 2) focuses on determining
the possible engagement outcomes and the associated DGZ and AGZ distributions. The third part

(Chapter 3) discusses the how to combine the distributions top determine the possible outcomes of a
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nuclear exchange. The final part, consisting of the of a summary chapter (Chapter 4) and

Appendices, provides additional technical detail.

Some of the subjects discussed are the topic of several separate research papers. When this
occurs, an overview of the topic is provided and the specific papers are referenced for more detail

( Youngren [1989a,b,c] ).
Uses of the Model

The probability model for nuclear force arrays described in this paper may be used in three
distinct ways: as a means for selecting specific nuclear exchange cutcomes that may be simulated in
low-resolution, expected value, conventional theater-level simulations such as FORCEM; as a
research tool to determine the sensitivity of various outcomes to different assumptions and sets of
input parameters; and as a surrogate for detailed simulation models of nuclear exchanges such as

NUFAM II1.
(1) Using the Possible Ouicomes to Handle Uncertainty in Ezpected Value Modeling

A theater-level nuclear exchange may generate many different outcomes which will have a
significantly different effect upon any post-nuclear battle. We use the probability models to estimate
sets of possible nuclear exchange outcomes, which can be partitioned into sets which we expect to
have significantly different effects on the post-exchange conventional battle. The model described in
this paper may be used to estimate the probabilities associated with the defeat of each targetable
unit, which can be aggregated to determine the probabilities associated with the defeat of each unit
represented in FORCEM. If we combine this information with the idea of partitioning of the sample
space into outcome sets that lead to significantly different results at the theater level, we can
determine the most likely outcome (mode) within each partition, and the joint probability associated

with all outcomes within a particular outcome set.

We select an outcome from within each separate partition and use it as input to FORCEM.
Each input set represents a different nuclear exchange outcome with (by assumption) significantly
different theater-level results. The expected value FORCEM simulation can be run several times.
once for each input set, to capture the variability inherent in the nuclear exchange and predict its

effect upon the conventional battle. We can associate the probability of an outcome coming from
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within a particular partition with the probability of the theater-level result. This provides us with a
means for estimating the impact of variability in the input data (in this case, the results of a nuclear

exchange) on the output of the expected value model.

The methodology used to partition the outcome sets and select outcomes for input to FORCEM
is described fully in CAA-RP-89-5, Handling Uncertainty in Input to Ezpected Value Models
(Youngren (1989c]). The methodology developed in this paper permits us to determine all possible

exchange outcomes (in terms of the defeat criteria) with their associated likelihoods of occurrence.

(2) Use as a Research Tool Used to Determine the Sensitivity of Ouicomes

The model described in this paper may also be used as a research tool to determine the
sensitivity of various outcomes to different assumptions and sets of input parameters. In theory, this
type of analysis can be conducted using any simulation of a theater nuclear exchange such as
NUFAM III. In practice, however, major simulation models are sufficiently complex, non-
transparent, and time-consuming to set up and run that conducting such analysis becomes lengthy
and difficult. The analysis can be performed using part or all of the probability model described in
this paper. For example, the impact of using a different warhead may be examined. The effect on
preclusion and aggregation can be examined directly by modifying the parameter values in the
equations for preclusion and aggregation probabilities; the impact on the probability of defeating a

unit can be examined to determine the overall effect.

Because of the assumptions and approximations necessary to yield solutions amenable to
calculation in reasonable time, the answers will not be exact. However, the errors in calculations will
be less likely to affect conciusions drawn from comparisons and sensitivity studies than they will
affect any particular realization. Carrying the distribution forward through the analysis is akin to
performing an infinite number of independent samples; errors in closed form estimation of cdf’s, ctc.

may be less than that introduced by small sample sizes resulting from lengthy, costly simulations.

We can also avoid these errors in approximation if we are willing to lose a little of the model
transparency. It is possible to estiinate the probabilities of preclusion, aggregation, etc. using a
statistical Monte Carlo approach (Appendix E). The sensitivity of the results to individual values of
the parameters cannot be inferred directly; on the other hand; the accuracy of the results should be
more accurate than that obtained in a detailed simulation model using a single realization of an
array or using a stylized array.

11
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(3) Use as a Surrogate for Delailed Simulation Models such as NUFAM III

The final use of the model may be as a surrogate to the more detailed simulation models. The
advantage of using a model such as this lies in its speed (at least for answers pertaining to individual
units) and transparency. The corresponding tradeoff lies in the approximations made to yield
calculable results. If the approach of using a Monte Carlo statistical simulation is used to estimate
the various location-based probabilities, the answers obtained should be at least as accurate as the

comparable answers obtained from a detailed simulation.

If the direct probability calculations are used to determine the probabilities, there will be some
error introduced through the simplifying assumptions made in each section. The author intends to
conduct further simulation studies to estimate the error of the approximations made herein. The use
of the model with direct probability calculations as a surrogate, except in cases where an alternative
is not possible, should be considered only after a better appreciation of the source and impact of the

errors of approximation are realized.

Section I1I. MODELING THE ACQUISITION AND MOVEMENT OF TARGET UNITS

Before a potential target unit can be planned for engagement with nuclear weapons. it must be
acquired and retained as a viable target long enough to plan the nuclear fires. In order to alter the
course of the battle decisively, nuclear weapons use may be constrained to achieve a specific purpose
within an appropriate period of time. As a result, weapons may not be fired at potential targets as
they are acquired; also, there may be a significant delay between the time the fires are planned and

the time of detonation.

Low resolution theater-level models such as FORCEM generally move units periodically using a
relatively long time step. In FORCEM, division-sized units locations are updated every 12 hours.
Obviously, units subordinate to that division may be in movement during that 12 hour period. This
movement may affect our ability to retain the subordinate units as viable targets, and affect our
ability to successfully engage them. In order to determine if a unit can be acquired and/or engaged
as a stationary target, we must be able to represent the movement of these small units within the 12

hour time step.
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It is clear that we must be able to represent the acquisition and movement processes at a higher
degree of resolution in time and space then that provided by FORCEM and similar theater-level
models or scenarios. Our solution to this problem is to model the acquisition and the movement

processes of each unit as independent, alternating renewal processes. This approach is summarize

below.

The Target Acquisition Process

Detecting target units with sufficient accuracy to plan for nuclear fires is the process of target
acquisition. As a consequence of the movement capability of relocatable targets, they do not remain
acquired indefinitely (unless they can be tracked indefinitely once acquired): at some time. they
move, and the acquisition is no longer valid. Even if a tracking capability exists, there is a

probability that such tracking will be lost over time.

The outcome of the target acquisition process is an acquisition list. A target unit is acquired
when it is detected by a sensor, identified as a target, and placed on the acquisition list. A target
unit may be dropped from the list either due to a negative sensor report (i.e., we no longer detect its
presence), or it may be dropped after some period of time when the acquisition information cannot
be updated. Any given target unit will alternate between two states: acquired (retained on the list)
or not acquired. A target acquisition process is therefore a temporal series of such acquisition states.
The time to acquisition, T4, is the time it takes to acquire a target once any previous acquisition

has been dropped; the time of retention, Ty, is the time a target is retained on the acquisition list.

Targets that are engaged using conventional weapons are generally fired upon soon after
acquisition. Nuclear targets differ from conventional as they are planned for specific purposes
dictated by the overall tactical and/or strategic situation. As a result, they are not normally engaged
as they are acquired; rather, nuclear fires are directed at targets that are acquired and perceived to

be in place at the time the weapons are approved for fire.

Figure 4 illustrates a representative acquisition sequence for a relocatable target unit. Once the
unit has been dropped from the list, it is immediately subject to being reacquired. We expect that
nuclear weapons use will occur after the conventional battle has been underway for some time; thus.
we are interested in the acquisition probabilities at some point in time well after the acquisition

process has begun. Our evaluation of the acquisition status of units is made during a short period of
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time when planning fires for a particular nuclear exchange; during this short period, we assume that
the acquisition situation remains about the same; therefore the times to acquisition {T,} are
modeled as independent and identically distributed (iid). The same assumption is made about the
times of retention {T;} during this period. For relocatable targets, we can approximate the target
acquisition process as an alternating renewal process of indefinite length. Both the time that the
target is dropped from the list and the time that the target is acquired are renewal points of this

alternating renewal process.

Retained T, T,
Not acquired YE T, Ta
Time l | —>
Acquisition Acquisition

Figure 4. Possible Target Acquisition Sequence

The Movement State of the Relocatable Target

The target unit may be in one of two alternating states with respect to movement: it can be in
the move state (moving), or it can be in the stay state (-:ationary). We define the random variable S
to represent the length of time that a target is stationary and the random variable M to indicate the
length of time that it is moving. Again, our evaluation of movement status of units is made during
a short period of time when planning fires or firing a particular nuclear exchange; during this short
period, we assume that all S and M are mutually independeni and are distributed in accordance with
distributions Fg and Fy,, respectively, and represent the unit movement as an alternating renewal

process in the same manner as the target acquisition process.
Representing the Target Acquisition and Movement Process

When constructing a model of the acquisition and engagement of relocatable nuclear targets, it
is not necessary to explicitly represent the target acquisition and movement processes in a detailed
simulation. Since these processes can be represented as alternatiny renewal processes, well-known

results of renewal theory provide us with the following quantities for any unit:
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[y

. The probability that the unit is currently on an acquisition list.

(3]

. The probability that the unit remains on the acquisition list for any stated interval of time.

3. The probability that the unit was stationary at the time that it was last observed.

4. The probability that the unit remains stationary for any stated interval of time.
From these measures, it is possible to determine the probability (p,,,;;) that a potential target unit
is acquired and can be retained as a target until detonation. For additional detail, see Youngren

(1989a,b).
Section IV. NOTATION AND TARGET GEOMETRY
Target and Weapon Radii

We assume that target units are circular with a known radius 'y, for unit i Personnel and
equipment are assumed to be uniformly distributed across the unit area, so a defeat criteria of "C
percent of casualties to unit i’ translates to ‘‘C percent of the circular area of unit 1 covered by
casualty-producing nuclear effects.” Nuclear effects are also assumed to be circular with a single
dominant effect of interest for any particular unit #: we denote the radius of the dominant weapon
effect for weapon w as ry,. Note that ry, will also depend upon the defeat criteria; the radius for
moderate damage to a particular type of equipment, for example, is larger than the radius for severe

damage to the same type of equipment.

The weapon and target geometries discussed in this section are conditioned on knowledge of the
location of the unit (target) center and the weapon center. In Chapter 2, we discuss how we remove
this conditioning by placing distributions on the unit locations and upon the desired and actual

points of werpon detonation.

For a weapon w to be able to achieve a particular known defeat criteria against a specific unit :
with known characteristics, the circle of weapon effects ry, drawn around the point of detonation
(ground zero) must overlap the circle of radius r; drawn around unit ¢ with at least the specified
percentage of the target unit area overlapped. For ghis to occur, the separation between the center of
unit ¢ and the ground zero location of unit w must be less than or equal to a distance d, . If we
consult Figure 5, we see that if we draw a line segment between the point of intersection of the
target'and weapon circles, we can construct two right triangles. Label the distance between the point

of the upper intersection of the target and weapon circles and the line W-U,; as a. The distance from
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the center of the weapon circle (ground zero) to the line segment is labeled dy; the distance from
the center of the target unit circle to the line segment is labeled d;; . The left-hand right triangle has
a hypotenuse of length Ty, and sides of length a and d vy The‘ right-hand right triangle has a
hypotenuse of length ry, and sides of length a and dy,. We denote the total distance from W to U,

as diw;

thus,d; = dy + dUi.

/[

Figure 5. Overlap of Weapon and Unit Circles

Solving for d y, and d; as functions of r;, 1y, and d;, yields:
] ]

2 2 2
l'U. - rw + diw

d, = —¢ d dyw =d;, ~d.
Ux' 2diw an w iw Ui

The area of the portion of the intersection on the right (Figure 6) is

'Y, 2 d
1rrU‘ , o U.
A1=J r%/‘_—x2dx= l; 2‘—dU'_ I'ZU,-"'dzU,. —d“Uism 1(#)]
. 1}

x=d
%

ool

Figure 6. Areas A, and A, of the Overlap
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By symmetry, the area of the porticn of the intersection on the left is

) )

2
d
A2=,l)l:7r;w—dw r3 —d¥, —d% sin” 1(r

I

g

Thus the total area of the intersection is:

A Al + A2 = (I'U +1'W)

dy d

[:du .'rU —dU +dy J‘w—dw + djy sin” ( ) + dWSi“-l( T )]
l

Since A; is the area of coverage required to achieve the commander’s defeat criteria, and d;; and
)
d can be expressed in terms of Ty T and d;,, d; is the only unknown in this equation. A

standard solution technique such as Newton’s Method can be used to solve for d;

To summarize, we define the following values, which can be computed from input data
specifying characteristics of the unit and the weapon :
rw = Radius of weapon effect (for each specified weapon)
ry. = radius of unit «
d;, = the maximum distance that a weapon w can be displaced from the center of mass
of a targeted unit i and still achieve the commander’s defeat criteria.
A, = the area of coverage of the target unit i by the weapon effects radius ry, required

to achieve the commander’s defeat criteria.

Preclusion

Important factors that must be considered in modeling the effects of the use of nuclear weapons
are the constraints placed upon DGZ (desired ground zero) placement caused by rules which are
intended to preclude damage and injuries to civilian population centers. This is more applicable to

US fire planning than Soviet, but the model has to be able to represent the effects for both.

We assume that the preclusion areas are circular. For population centers, these are normally
circles that can be drawn around an urban area such that 95% of the population lives within the

circle. Large, irregular population centers may consist of more than one overlapping preclusion circle.
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We denote the radius of a preclusion area k as r P, All weapon DGZ’'s must be situated such that
there is a high degree of confidence that no significant weapon effects will overlap any of the
preclusion area. Weapon effects tables (e.g., FM 101-31-2 [1986]) or standard computer programs for
weapons effects will provide or compute the necessary offset distance r (preclusion), which is a
distance at which one can be P% certain (for some confidence level P) that no significant weapon
effects will extend. ry (preclusion) thus includes consideration of the weapon CEP and any
appropriate safety factor. Linear preclusion areas (e.g., FLOT for troop safety) may be represented
as circles with an outer edge tangent to the point of the linear preclusion area closest to the DGZ. In
order to meet preclusion criteria, the DGZ for weapon w can be located no closer than a distance

rwpk = ( ryy(preclusion) + r P, ) to the center of the circular preclusion area k (Figure 7).

Figure 7. Shift in DGZ Due to Preclusion

If we consider a unit ¢ with radius r; , the desired ground zero (for a sin-gle target - no
aggregation) will always be target center itf preclusion considerations do not intervene. If the
perceived location of the unit center of mass is at a distance greater than or equal to T, from the
preclusion area, then no DGZ shift is necessary. If, on the other hand, the the perceived location of
the unit center of mass is at a distance less than "WP,‘ from the preclusion area, then the DGZ must
be shifted in a direction away from the preclusion area. It is possible to displace the DGZ up to a
maximum distance of d;  and still meet the commander’s defeat criteria for that unit. If a shift

greater than d, is required, then the unit cannot be engaged with a nuclear weapon of size w. Thus

18




CAA-RP-89-3

we define a distance Twp,u, 3 the closest distance that the perceived center of mass location for
3

unit i can approach a preclusion area k using weapon w and still be capable of achieving the defeat

criteria for unit i. Clearly, Ywp,u;, = Twp, ~ d;, (Figure 8).

In summary, when examining the possibility of shifting a DGZ away from perceived target
center to preclude damage to preclusion areas k, we have the following distances defined:

ry(preclusion) = Radius of weapon effect of concern for preclusion purposes

ry. = radius of unit ¢
3

Ip radius of preclusion area k
k

Twp, = ry(preclusi~n) + r P, the closest distance that a DGZ for weapon w can approach
preclusion area .

rWPk U, = Twp, ~ d, ., the closest distance that a perceived location for unit i can approach

preclusion area k using weapon w and still achieve the defeat criteria for unit i.

rw (preclusion)

Figure 8. Target Coverage Using a Shifted DGZ

Aggregation

It may be possible to engage two or more target units i, j, ... with a single nuclear weapon, if it
is possible to position a weapon w such that it is simultaneously within a distance d; , of unit ¢ d e
of unit j, etc. In the probability model developed in this paper, we only deal with pairwise

aggregation. If we are considering two units i and j for aggregation, we define a distance D;;
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between their perceived locations. We refer to the perceived unit locations, rather than the actual
locations, because the aggregation is done by target planners based on their knowledge of the units.
The perceived unit location of unit i has random coordinates X;; and Y,;; computing the

distribution of X;, and Y, is discussed in Chapter 2. Clearly,

D} =X, - X, P+[Y,—Y; ]*.

Barring preclusion considerations, the desired ground zero will be located at a point which
maximizes the coverage of the weapon effects against both targets. This implies that the DGZ will
be located somewhere on a line segment between the perceived locations of units i and j, such that

the distance between this point and units ¢ and j is less than d;  and djw respectively.

Suppose that we are interested in determining the DGZ for an aggregate target formed from
units ¢ and j. We will choose the new DGZ along a line segment connecting units i and j (Figure 9).
thus we can express the DGZ as a linear combination of the coordinates of units : and j. Let o D,;
denote the distance from the DGZ to unit j; thus the distance from the DGZ to unit i must be
(1=a) Dyj.

1 T ]
DGZ

Figure 9. Location of DGZ Given Aggregation (Without Preclusion Shift)

The maximum separation between the two targets, d,;,, is defined as the sum of d,,, and d;,,

The feasible region for the DGZ lies in the area of overlap of d;,, and d;,, when d;,, + d;,, > D;;

w

D, — d, d.
(Figure 10). Clearly —"—D———w <a< Dﬂ’ where a is based on the distance from target j as shown.
1) ]

v

aD. d

i jw

Figure 10. Feasible Area for DGZ Given Aggregation
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The random variables representing the coordinates of the DGZ, X, and Y5, are computed
from the located (perceived) unit coordinates ( X, , Y, ) and ( X;, Y,/ ) as follows:
XDGZ=QX3L+(1—0)X)L

D.. iw d.
The proportion a, - < a € <=, may be selected in various ways as discussed in
] E‘J Dij’

Chapter 2.

To recapitulate, the following terms are defined for use in handling aggregation of targets:
X, = the X-coordinate of the perceived location of unit i

Y, = the Y-coordinate of the perceived location of unit :

Xpgz=aX;p+(1—-a) XL the X-coordinate of the aggregate target DGZ

Ypgz =Y, + (1 — a)Y,, the Y-coordinate of the aggregate target DGZ

dijp =d;y, +d

jw» the maximum separation between the two target units : and j permissible

for the unit to be engaged with weapon w.
Combining Preclusion and Aggregation

The aggregate target formed from a unit pair ( i,j ) is subject to the same preclusion criteria as
any single unit engaged with a nuclear weapon. Thus we check the aggregate DGZ location (with
coordinates X~y and Yp;7) to see if the distance from it is less than rwpk for any preclusion area
k, given the weapon w that will be employed against the aggregate target. If the DGZ location is
closer than ru}Pb to any preclusion area k, the DGZ must be shifted away from the preclusion area.
The techniques for computing the DGZ shift are identical to those employed for a single target

discussed previously.
Section V. THE UNIT LOCATION MODEL
Introduction
When a subject-matter expert (usually military with field experience) manually arrays small
units within a larger sized unit (e.g., battalions within a division), he begins. at least mentally, with
a *‘typical” set of relationships between units based on military doctrine and tactics, given the

general scenario. This set of relationships is then modified to take into account terrain features. the
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specific scenario-based missions of units, etc. We can picture the “typical” set of relationships as a
stylized array or template for the larger unit (e.g., division). Actual unit locations can then be
expressed in terms of deviations from the template. As always, when we are a priori uncertain about

these deviations, we describe our uncertainty in terms of probability distributions.
The Distributional Form

As we saw in Figure 3, we establish cartesian axes such that the y-axis is parallel to the
orientation of the unit, and the x-axis is perpendicular to the unit orientation. The model described
herein uses the normal distribution to model deviations from each templated unit location in both
the x and y directions. That is, let X; measure the deviation across the width of unit i, and Y,
measure the deviation across the depth of the same unit. The marginal univariate distributions for

X;and Y, i = 1, ..., m, are assumed to be normal.

If we examine actual arrays of units that have been prepared for use in other studies, and plot
the contours of likely shifts, the contours tend to be ellipses aligned along one of the two axes. That
is, the likely locations for units tend to be parallel to the FLOT for most units; perpendicular to the
FLOT for others. Rarely if ever are units primarily oriented diagonally to the FLOT. Thus it is
reasonable to assume that all X;’s are mutually independent of all Y,’s for all i, which yields

probability contour ellipses parallel or perpendicular to the FLOT.

It is also apparent when examining arrays prepared for other studies that the deviations across
the width are not independent, and the deviations across the depth are not independent as well.
Because terrain and military tactics tend to cause a similar shift in the width and/or the depth of
adjacent units, we desire to establish a model where the the X variables have a positive correlation
between adjacent units. The same holds true for the Y variables. We can arrive at such a model if
we use a generalized multin;)rmal distribution for the coordinates ( X,, X,, ..., Xm ) and ( Y,, Y.,
...y Ym ) of m units within a larger unit area. We know that any subset { X;, X,, ..., X5 ), s < m,
or any set of linear functions of ( X;, X,, ..., Xm ) are also distributed as multinormal. For
example, each pair of X variables and pair of Y variables has a bivariate normal distribution with a
nonzero correlation. That is, for any adjacent units : and j, the pair ( X,, XJ- ) ~ BVN[ ( Brish )
(a’f.,-,aij), P i ] and the pair ( Y, Y;)~ BVN| (Byirty)r (aii,o'lzu»), Pyii ] One of the properties of

the bivariate normal distribution is that the variable U, = (X;-X;) ~

2 . - s e s . .
N( p,; — [T a; + 05 - an-jan-aq- )i V,-j =(Y; - Yj ) is distributed similarly. Thus the
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squared distance between unit i and unit j, ( X, — X. )2 + (Y, — Y. )?, is distributed as the sum
: ] 3 J

of squared normals.

If we consider the variables U and Uj, which will be used in part to determine the distance
between unit ¢ and unit j and the distance between j and &, U,; and U;, are dependent, jointly

distributed as bivariate normal when conditioned on Xj.

We will consider aggregation and bonus effects for pairs of targets only. Therefore, we will oniy
be concerned with the distributions of pairs ( X; — X; Yand (Y; — Y; ) for adjacent units 7 and j;
they will be determined independently and any dependencies between non-adjacent unit pairs will be

ignored.
Sources of Data for Array Locations

The prior multinormal distributions for the ( X, Y ) locations of the units will be obtained from
subject matter expert opinion. Any suitable scheme for eliciting expert opinion will suffice; [
recommend Lindley [1983] as a good source. The mean vectors will be constructed by asking the
subject matter expert(s) to set up a doctrinal template (stylized array) for the forces of interest.
given the force structure (dictated by the study) and the overall tactical and operational situation
{dictated by the theater-level model or scenario). The separation of units in the template is
established on any arbitrary nominal scale; actual coordinates will be generated through some scale
multiplier of the overall width and depth of the unit being templated. For example, if templating a
division with two brigades on line, each brigade may have a frontage of 1/2 the division frontage;
the battalions within the brigades will be similarly separated. Exceptions to this might be the Y-
coordinate (distance from FLOT) for artillery units - artillery is generally placed at some constant
setback distance from the FLOT regardless of other circumstances. The template (which has mostly
relative coordinates) is translated into scaled coordinates given the dimensions of the templated unit.
For example, if the division frontage is 10 km, the two forward brigades will have a scaled frontage

of 5 km each.

The variance/covariance matrix is similarly established by the subject matter expert on the
same nominal scale. Variances will be elicited individually; covariances will be established through
independent pairwise comparison. Although this will not yield a true multivariate relationship set, it

is generally not possible for experts to generate a large variance/covariance matrix directly (rather
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than pairwise). This approach is also consistent with the evaluations of separation distances between

units that will be made in Chapter 2. If necessary, a non-informative prior distribution may be used.

The mean vectors, denoted as p- and py, are assumed to be known for any invariant specified
doctrine and theater scenario. The variance/covariance matrices, denoted as £; and L, are assumed
to be unknown and the initial expert-generated matrices will serve as prior distributions on the ’s.
This parameter distribution is updated using standard Bayesian techniques (Appendix C). The
multinormal distributions of the unit coordinates will be evaluated conditioned on the current best

estimate of ( u, £ ).

The sources of the data for updating the matrices ¥ are independent realizations of arrays
generated manually by subject matter experts on the NUFAM-GAP workstation (see next
paragraph, below), starting with the templates. The NUFAM-GAP system allows arrays to be

quickly generated with the statistics stored automatically in the workstation.
The NUFAM-GAP Workstation

CAA has acquired a Graphical Analysis Package for the corps-level stochastic nuclear model
NUFAM III called NUFAM-GAP. The NUFAM-GAP workstation consists of a PC accompanied by
a videodisk player and a TV monitor. Map images of the theater of interest (e.g., central Europe)
are displayed from Defense Mapping Agency videodisks onto the TV monitor. The workstation
allows for graphic symbols representing unit locations to be superimposed upon the map image. An
analyst can use a mouse to easily move the unit symbols on the map, rapidly forming a force array

which is captured on a data base.

To use the NUFAM-GAP workstation to generate data for the nuclear force array probability
distributions, the analyst starts with a template of the force to be arrayed. This template (which can
also be easily created on the workstation) represents the doctrinally most likely positions for the
force to be arrayed without reference to terrain. Stylized arrays created for other nuclear studies may
be used as one source for array templates. The unit positions on the template represent the mean

vector in the X and Y coordinate directions.

After displaying the template on the terrain image, the analyst rapidly shifts the unit positions

as necessary to account for the terrain, keeping in mind the scenario and unit mission. The shifts
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from the template location are stored in a data base, and the squared distances between shifted
locations and template locations represent a single realization of the variance/covariance matrix.
The analyst {or other analysts) can do this repetitively, normally using different sections of terrain
within the same general area. The realizations form the data used to update the most recent

variance/covariance distribution, using Bayes’ Law.
Assumptions

Several major assumptions are made in order to produce a model whose results can be computed

in reasonable time. These assumptions are summarized below.

a. Independence Between X and Y Coordinates. All X coordinates for all units are assumed to

be mutually independent of all Y coordinates for all units.

b. Aggregation and Bonus Effects are Evaluated for Pairs. The probability that any unit j, j #
i, being engaged along with unit 7 as an aggregate target is considered independently for each j. Only
the pairs with the greatest likelihood (largest marginal probability) exceeding some threshold are
considered for further evaluation in weapon assignments and probabilities of defeat. Similar
considerations are employed for bonus effect calculations. The effect of pairwise consideration forms
a bound on the probability that a unit ¢ will be aggregated with some other unit j (see the section on

*Evaluating Joint Probabilities” in Chapter 3).

c. Mizing Parameters Approzimated as Constants. The coordinates of the Desired Ground Zero
(DGZ) shifted due to preclusion and/or aggregation is a linear combination o X; + (1—a) X; of
some normally-distributed coordinates ( X;, X; ). The mixing parameter a is generally a function of
the straight-line distance D;; between the locations of i and j, which makes the linear combination
non-normal and lacking a closed-form solution. In order to preserve the normality of the DGZ
coordinates and ensure a solution, the mixing parameter o is approximated using &, a constant
which is formed using the expectation of D?j. This techniques is employed for both aggregation and
preclusion. Preliminary simulation studies show that the approximation yields reasonably accurate
results except when the unit mean location is very near a preclusion area, where the approximation

understates the probability of engagement.
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d. Single Shifts Due to Preclusion. It is possible that the DGZ may be shifted from the ideal
location (target center of mass) due to preclusion constraints arising from one or more preclusion
areas. We will bound the probability of a DGZ shifting due to preclusion by the probability of the
DGZ shift being caused by the preclusion area most likely to cause a shift. Furthermore, we will
assume that the shifted DGZ is located on a line through the preciusion area and the prior

(unshifted) DGZ location at a distance Twe, away from the preclusion area (k).

e. Approzimate Evaluation of Disiributions. The normal cdf lacks a closed-form solution, but
many reasonable approximations have been developed which are used herein. The distribution for

quadratic forms in Normal variables must also be approximated (see Appendix D).

f. Targeting Assumptions. There are many assumptions (standard in nuclear effects models)
relating to the nuclear weapon and the target. The target location error and the Circular Error
Probable (CEP) of the weapon are assumed to be distributed as circular Normal. The unit areas.
preclusion areas and the weapon effect areas are circular, with target elements distributed uniformly
over the target unit area. We also assume that at most one weapon will be employed against any
one single target; if this is not true a priori, the data base needs to be defined using multiple targets

located at the same point (without bonus effects).

g- Independence of Evaluation of Results between Unils. In ordei to evaluate the probability that
a unit i is defeated, we assume that the probability of defeating unit i (with any weapon) is

independent of the probability of defeating unit j ¥V j # 1.
h. The Center-of-Mass for each Unit Templated is Known. When we form a template for a large

unit, say a division, we assume that the division center-of-mass relative to some terrain coordinates

is known.
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CHAPTER 2
DETERMINING THE DISTRIBUTION OF THE DESIRED GROUND ZERO

Section I. CHAPTER SUMMARY

Summary of Contents

In this chapter, we will determine the various ways that a Desired Ground Zero (DGZ) may be
established. For each way, we will also determine the appropriate distribution for the DGZ. The
DGZ distribution is the distribution of the aimpoint of the weapon. When we include consideration
of the weapon accuracy and reliability, we can use the DGZ distribution to determine the
distribution of the point of detonation (if a detonation occurs) - the Actual Ground Zero (AGZ)

location.

If a target unit i is available (has been acquired and will be retained through the time of
detonation, as discussed in Section Il of the previous chapter), then it may be engaged in the

following ways with a particular weapon type w:

(1) Engaged as a single target with no DGZ shift. This will occur if there is no suitable target
unit j, j # i, available for aggregation, unit : is not precluded by a preclusion area, and all
preclusion areas are sufficiently far away that the DGZ need not be shifted away from them. In this

case, the DGZ will be located at the center of the perceived target location.

(2) Engaged as a single target with a DGZ shift. This will occur if there is no suitable target
unit j, j # 1, available for aggregation, unit ¢ is not precluded by a preclusion area, but there is at
least one preclusion area sufficiently close that the DGZ needs to be shifted away from it. In this
case, the DGZ will be located at a point opposite the preclusion area on a line drawn from the

closest preclusion area through the center of the perceived target location.
{3) Engaged as part of an aggregate target with no DGZ shift. This will occur if there is at least
one suitable target unit j, j # 1, available for aggregation, unit ¢ is not precluded by a preclusion

area, and all preclusion areas are sufficiently far away from the aggregate target DGZ that the DGZ
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need not be shifted away from them. In this case, the DGZ will be located at a point in between the
two target units on a line drawn between the center of the perceived target location and the center

of the location of the closest target unit j.

{(4) Engaged as part of an aggregate target with a DGZ shift. This will occur if there is at least
one suitable target umnit j, j # i, available for aggregation, unit ¢ is not precluded by a preclusion
area, but there is at least one preclusion area sufficiently close that the DGZ needs to be shifted
away from it. In this case, the DGZ will be located at a point opposite the preclusion area on a line
drawn from the closest preclusion area through the unshifted aggregate DGZ (the DGZ that would
have been selected in paragraph (3) above).

(5) Unit i is not engaged. This will occur if unit 7 is precluded by any preclusion area.

This determination is made for all weapons w. Note that it is possible for different outcomes to
occur with different weapons. If we are doing a Monte Carlo realization of the model, then only one
of the five outcomes above will occur for each weapon system for each replication. If we are solving
the model analytically, then there is a probability associated with each outcome. For example. for a
particular : and w, outcome 1 may occur with probability 0.2, outcome 2 with probability 0.35.
outcome 3 with probability 0.1, outcome 4 with probability 0.2, and outcome 5 with probability

0.15. In this case, the requirement is simply that all out the outcome probabilities must sum to 1.
Summary of the Logic

The logic fcllowed in this determination is shown in Figure 11. The probabilities listed next to
each line will be explained in detail later in the text. Beginning in the lower left hand corner. the
following steps occur for a each unit i and weapon wu:

(1) The distribution of the actual unit location ( X;, Y;) is determined using the template
information (which yields the mean location) and the other distributional information
(variance/covariance vector).

(2) The acquisition ard movement models are used to determine the probability that unit 1 is

available. The probability that unit j is available is also computed for all ;7 # .
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(3) The perceived unit location ( X;;, Y; ) is derived for all available units by combining the

distribution of the target location error with the distribution of the actual unit locations.

(4) The distribution of the distance between the perceived unit location of unit i and all

preclusion areas is computed. The distribution of the distance to the nearest preclusion area (in

terms of probability) determines the p.obability that unit i is precluded. This calculation is also

made for units j that may be aggregated with unit .

(5) The distribution of the distance between unit : and all units j, 7 # i, is made to determine

the closest (in terms of probability - that is, the unit j that has the highest probability of being close

enough to aggregate using weapon w).
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At this point, there are 3 possibilities with respect to unit i It may be engaged as a single
target, as an aggregate target with the closest unit j, or it may not be engaged at all. Figure 12
continues this logic by looking at the possibility of having to shift a DGZ away from the preferred

location (closest to unit center(s)) due to preclusion.

(6) For i engaged as a single target, the distribution of the distance between the perceived unir
location of unit i and closest preclusion area is used to determine the distribution of the DGZ if a

DGZ shift is required. Otherwise, the DGZ (unshifted) is located at the perceived center of unit i

(7) For i engaged as an aggregate target, the distribution of the distance between the unshifted
DGZ (for unit i and the closest perceived unit j) and the closest preclusion area is used to determine
the distribution of the DGZ if a DGZ shift is required. Otherwise, the DGZ (unshifted) is located

between the perceived centers of units i and j.

(8) For each engagement possibility with unit i and weapon type w, there is an associatcd
probability p_ ... that a round of weapon type w will be available for use to engage unit i The

detail on how to compute these probabilities is found in Chapter 3.
The remainder of this chapter derives the distributions for these DGZs.
Summary of the Results

If a target unit i is available (has been acquired and will be retained through the time of
detonation, as discussed in Section III of the previous chapter), then the distributions of the DGZ for

each way that it may be engaged with a particular weapon type w follow:

(1) Engaged as a single target with no DGZ shift.
Xpaz = Xig ~ Nty + figin 05 + 055
Ypez = Yip ~ N hyi + Byyir 03 + 04;)

(2) Engaged as a single target with a DGZ shift (the superscript ‘s’ indicates a shifted DGZ).

Xpez =B X;p+(1-28) xp ~ N( B("zi+#tzi)_(1_‘@)ka’ Bio%+ony))
Y'baz =4 Y,'[, +(1=0) yPIc ~ N( ﬂ(l‘,.‘"‘l‘w,‘) _(l-ﬂ))'pkv 52(035‘*‘0?1,.') )
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(3) Engaged as part of an aggregate target with no DGZ shift.
xDGZ=°‘xiL+(1"a)xj
~ N( oyt b) + (1= @) (B + biy),

az(ai,-+afm~) + (1—0:)2(0';“;- +d§n') + 20‘(1“0)%,50’:,'0’;7' )

Ypgz=aY  + (1 —a)Y;

~ N( oyt ) + (1= )by + iy

a*(03+0h,) + (1=a)’ (0}, +0,) +2a(1-a)p 0 0, )

(4) Engaged as part of an aggregate target with a DGZ shift.
Xbez = BXpgz + (1-B)xp = BlaX;p + 1-a)X; /] + (1-B)xp,
~ N( @Byt ty) + (1= )i+ i) = (1= B)xp
(aﬂ)z(aii+0'fm-) + ((1—a)ﬂ)2(a§i+ofxi)+ 20(1“’)52P.~;{j°’d"'z,’ )

Ybsz = BYpgz + (1=B)yp, = BlaY;y + (1-a)Y; ] + (1-B)yp,
~ N( @By + i) + (1= By + i) = (1=Byp
(aﬁ)2(0'3,-+0’fy,-)+((1—a)ﬂ)2(¢7§;+‘7?y;)+ QG(I—Q)ﬂzpyij”yi”yj )

(5) Unit i is not engaged. In this case, there is no DGZ.

The symbols used in the above expressions are:

Byis Byt the mean actual locations (in the x and y directions) of unit i as defined in the

templates.

2 2

O i» Tyt the variance of the actual locations of unit i in the x and y directions.

Bizir Bayzris crfﬁ, dfy’-: mean and variances of the shifts associated with the target location
errors of unit .

X P, y P, The coordinates of preclusion area & (as used, the closest preclusion area).

X, Y, z: The coordinates of the perceived location of unit .

a: The mixing parameter which determines the location of the unshifted aggregate DGZ.

B: The mixing parameter which determines the location of a shifted DGZ.

The remainder of this chapter simply presents the mathematics behind the distributions for
these DGZs.
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Section II. DERIVATIONS AND RESULTS
The Marginal Distribution of the Actual Unit Locations

The actual unit location for a unit ¢ is expressed in terms of the X-coordinate, X;, and the Y-
coordinate, Y;. The joint distribution for all m X-coordinates X,, ..., Xm is distributed as
multinormal{ gz, L ) and the joint distribution for all m Y-coordinates Yy, ..., Ym is distributed
as multinormal( gy, Xy ). The vector p is known (derived from templates) and the matrix X is
distributed as Wishart (Appendix C). For all of the calculations to follow, T is assumed to take on
its mean value. The marginal distribution of any X;, i = 1, .., m is distributed as
Normal( u,,, ai- ) and the marginal distribution of any Y,, i = 1, ..., m is distributed as

2
Normal( Byir Tyi )-
Determining the Marginal Distribution of the Perceived Unit Location

When a unit is acquired, there is a possible target location error (TLE) associated with the
acquisition. The TLE is modeled using a bivariate normal distribution (in the X and Y direction)
from the aimpoint with zero correlation. Since the marginal distributions of X; and Y, are normally
distributed for any unit 7, the perceived unit location associated with that unit is distributed as the
sum of two normals. Let TX; and TY, denote the target location error in the x and y direction.
respectively, for unit i and let X;, and Yi\L denote the located (perceived)} coordinates of unit :.
Then

Xip = (X + TX;) ~ N(pyy + bygip 05 + 03;)

Yip = (Y, + TY;) ~ Ny + pri 03 + 05 )

Determining the Disiribution of Distance Between Targets

In order to determine if it is possible to engage two targets with one weapon, one must
determine the distance between the two. We assume that all aggregation will occur only between
pairs of closest adjacent units. The determination will be made by the target analyst based on the
unit aimpoints (perceived center of mass if no shifts occur due to preclusion), not actual unit
locations. Using our normal model given above, the squared distance between two adjacent units :
and j, denoted as D?j, is:

DI =[(X; +TX;) = (X; + TX; ) P+ [(Y; + TY;) = (Y; + TY;)]*.
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If we rearrange the terms inside the square brackets, we see that this is the sum of two squared
normals.
D} =[X; - X; + TX; = TX; > + [Y; = Y; + TY, = TY; }%,
where
- 2
Boij = (ﬂ,g+#,,.-—#-—#t,,~)

a;j = ( 0' . 4 crm + 0' .+ ”tzg 21’:;‘;‘"’::"7:,7'
Byj= By + Byi — u,j - #,,j)
2

au—(a +a¢y.+a'

¥ ‘VJ 2,’![‘) yi IIJ )

To evaluate these terms, let us define unit normal variables Z _, and Z such that:

X. =X +TX, ~TX. ) — .
z..s(‘ J - i) ""’~N(o,1) and

It} .'I:‘t]

( Z ”yij )2

Then D} = DZ; + D2, = o2, (2 o3 J
y'J

¥ ij zij

Prij 12
+ 7o )

and we know that ( Z “m )

~ X}(As) and ( Z,; +o—j—j P~ A
where x2()) denotes a non—éentral chi-square distribution with degrees of freedom v and a non-

centrality parameter A.

If we define the general quadratic form Q( 2 ) = Z A ( Z - Bsj ) , where _each Z ~ N(0,1),

then we see that the squared distance between units i and J» D%, is a quadratic form in normal

'J

variables. For evaluating the distribution of D2, see Appendix D. In most cases, the distribution of

i
y
D2 can be approximated as Normal ‘:2 Trij Prjp & 2(1+ 25 ”k" ) k,]:‘ .
k=r k=z

Modeling Aggregated Target DGZs

The effect of target aggregation is to shift the DGZ for a detonation from target center (or the
point closest to target center allowed by preclusion considerations) to a point along a line drawn
between the centers of two targets that will be at least partially covered by the effects of a single

weapon. Aggregation can occur between units i and j using weapon w whenever the perceived centers

34




CAA-RP-89-3

of i and j are within some maximum allowable distance d, ;,, of each other, where d,;,, is determined

Jjw
by the weapon effects radii of weapon w, the sizes of targets i and j, and the commander’s guidance
that dictates the minimum acceptable coverage of targets i and j by weapon w. Implicit in this
discussion is the assumption that both targets ¢ and j have been acquired, otherwise aggregation

cannot occur (although bonus effects might).

Suppose that we are interested in determining the DGZ for an aggregate target formed from
units i and j. Recall that, barring preclusion considerations, we will choose the new DGZ along a line
segment connecting units ¢ and j with coordinates as follows:

XDGZ=°‘X:‘L+(1—")XJ'L

Ypgz=aY, +(1l—-a)Y;

The proportion a, 0 € a < 1, may be selected in either one of three different ways:

a. Weighted by Target Priority:

(1) For targets of equal priority and si —DL—__d"”+l ﬁ_D‘J diw
or a.rgeso equ pr Yy anda size, o = D,‘j 2 D‘-j T

(2) For targets of equal priority but different size, a is weighted by size. Suppose r; , the
j
radius of target j, is greater than ry; . Then the DGZ should be closer to target j than i To do this,
1)

Tv, D, —d,, Iy, d; D, —d;,
we note that ——i— < 1 so weset a = —Z + i gy T
Ty, + rU,' 2 D ry, + fu; Dy; D;

(3) For targets of different priority and potentially different size, we want to place the DGZ
closer to the higher priority target, taking into account variations in size. We propose a simple
multiplier to the o computed using (1) or (2) above, based on the priority numbers given to each
type target, with priority 1 indicating the highest priority, 2 the second highest priority, etc. If
target i has priority [i] and target j has priority [j], then we let o equal the smallest value of

) D.. — d. Iy, . D. - d; -

i
target j is more important), then o will be smaller and the DGZ will be closer to target j. The

opposite will be true if [j] > [{; if [j] = [f], « remains unchanged.

b. DGZ Set as Close as Possible to Target of Greatest Priority. In this case, we set a such
that the DGZ is as close to the target of greatest priority as possible while still achieving defeat
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criteria against the secondary target. To simplify exposition, suppose that [j] < [i] (thus j is more

important than {). Then we want o to be 2s small as possible and the DGZ to be at a distance
D. —d.

D;; —diy from target j. This is achieved when o = —"—D—£ regardless of any other consideration.

i

c. a Set to be a Constant. If we desire a constant o (rather than one dependent upon Dij)’ we
can use any of the formulas in a. or b. above and substitute D; =

ij
\J E[ D;‘ZJI OSij S(diw+diw)2] , the conditional expectation of D;, for D;; (the formula for

i
computing this conditional expectation is given in the section on preclusion given aggregation). The
main reason for doing this is that the random variables representing the coordinates of the DGZ,
Xpgz and Yoy, remain independent and normally distributed if o is constant. If o is a random

variable (a function of D;), then we lack a closed-form expression for the distributions of X, and

Ypez:

Modeling Preclusion Given No Aggregation

We condition the results in this section on the event D?j > (d,.w+djw)2 = d? _; that is, on the

g w
event that the units ¢ and j are sufficiently far apart that it is not possible to achieve the defeat
criteria against both targets using a single weapon of type w. As a result, we are interested in
examining possible shifts due to preclusion constraints as applied against each target : and )
individually. Barring any preclusion constraints, the DGZ of the weapon would be at the located

(perceived) unit center of mass; that is, at the coordinates ( X;;, Y, ) for unit ..

For each target i, let D, P, denote the distance between preclusion area k and target unit .
Recall that Twp, = ry(preclusion) + T, the closest distance that a DGZ for weapon w can
approach preclusion area k, and rWPk U, = rwpk — d,,, the closest distance that a perceived
location for unit i can approach preclusion area k using weapon w and still achieve the defeat
criteria. With regard to the target unit ¢, preclusion area k and weapon w, there are several possible

outcomes:
a. D? P, < r%vpk Uy If this outcome occurs, target i cannot be engaged with weapon w.
'b. D;“.’Pk > r;;VPk for all preclusion areas. If this outcome occurs, target i can be engaged

with weapon w without a shift in DGZ caused by preclusion.
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c. t3yp, > D25 > rdyp ;. for some preclusion area . If this outcome occurs, target i can
be engaged Wit;l weapor: w, but ghe. DGZ will need to be shifted away from the located (perceived)
target center of mass to a distance no closer than Twp, to the center of mass of preclusion area . In
order to achieve as much coverage of the target as possible, we assume that the DGZ will be shifted
along a line drawn through the center of mass of preclusion area k and the perceived center of mass
of target unit i to a point a distance of exactly rWPk away from the center of the preclusion area
(Figure 13). Thus the coordinates of the shifted DGZ, X{,;, and Y},,. soive the equation
(X%qz —ka)z + (Y})GZ-YPIc )2 = r"‘;vpk, where ( XPI:’ ka ) denote the coordiuates of the

preclusion area k center of mass. If we define a random variable 3 such that

r2

, wp
ﬁ':D?Pk,then Xboz = BXip + (1= 8)Xp and Yoz = 8Y;, + (1~ 0) Yp .
1
k

Uniti

Preclusion
area

Figure 13. Shift in the DGZ Due to Preclusion (Single Target)

We approximate [ using the constant , which allows X},,7 and Y}, to remain

2
B[D?, ]
independent and normally distributed. E[ D? Plc] is computed from the icentity D? P, =
(X5 — ka )+ (Y, — YPI; )% for each target i, ignoring (as an approximation) the dependence on
D,?j > d,j, in the evaluation of the expectation. For information on how joint dependencies are

approximated in this paper, see the section on “Evaluating Joint Probabilities” in Chapter 3.
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Modeling Preclusion Given Aggregation

We condition the resuits in this section on the event ij < (d;y +4dj, )%; that is, on the event
that the units i and j are sufficiently close that it is possible to achieve the defeat criteria against
both targets using a single weapon of type w. As a result, we are interested in examining possible
shifts in DGZ due to preclusion constraints as applied against the DGZ of the aggregated targets.
Barring any preclusion constraints, the DGZ of a weapon used against targets : and j would be along
a line segment connecting i and j; that is, at the coordinates Xpoy = a X;p + (1 — a ) X, .

Ypgz =Y, +(1—-a)Y,, whereais determined as stated in the section on aggregation.

For the aggregate target formed from units ¢ and j, let Dij P, denote the distance between
preclusion area k and aggregate target ij. If we assume that a shifted DGZ will be placed along a line
drawn through the center of mass of preclusion area k and the previous (unshifted) DGZ located at
coordinates ( Xpnz, Ypgz ) to 2 point a distance of exactly Twp, away from the center of the
preclusion area (Figure 14), the coordinates of the shifted DGZ, X};, and Y}, solve the

; 2 2
equation { Xpazy — XP‘: )+ ( Yhez — YPL- ) = rwpk.

Unit)

Uniti

Preclusion
ares

Figure 14. Shift in the DGZ Due to Preclusion (Aggregate Target)

Let us define a distance between the aggregate DGZ and preclusion area k as D"b P, =

(Xpgz— X,,k 3+ ( Ypez — ka )2. Once again there are several possible outcomes:

a. DzDPk< r2wpk v, for some preclusion area k, where Twp, Uy = max{ rwpk Uy Twe, UJ_}. If
this outcome occurs, either target i or target j cannot be engaged with weapon w at the aggregate
DGZ (one or both targets may still be able to be engaged as single targets).
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b. Df) P, > r%vpk for all preclusion areas. If this outcome occurs, the aggregate target
formed from units i and j can be engaged with weapon w without a shift in DGZ caused by

preclusion.

c. DZDP,C > 1'2,,‘,1;,]c v, for all preclusion areas, but Dzoplc < r:;VPk for some &, and
(Xpoz = Xip )* + (Yhgz — Y;1)? > d, and/or
2 2
(Xbez = Xj0)° + (Yhez — Y1 )* > dj,.
Because DzDPk < r2Wka the DGZ will need to be shifted away from the aggregate DGZ to a
distance no closer than rWPk to the center of mass of preclusion area k at coordinates (X%} 5,
Hcz) which solve the equation ( xj)GZ - ka )2+ ( Yhez — YPIc )2 = r:;,w,k. If we define
. . WP,
random variable 8 such that 8% = ——=, then
Dpe,

Once again, we are unable to obtain a closed form solution to the distributions of X}, and Y4,

unless we approximate 3 as a constant. We let
Twpe,

which allows X3 and Y} to
= ' DGZ DGZ
2 ~7 2.2 2 2
J E[ DPklUij S(diy +4d,,) anPkUij <Dpp, <prk]
remain independent and normally distributed. In this case, we condition the expectation of D P, on
the event that D?j < (diy + djy )%; that is, on the event that the units i and j are sufficiently
close that it is possible to achieve the defeat criteria against both targets using a single weapon of

type w. We make this correction in this case (preclusion with aggregation) since the unshifted DGZ

location is based on a linear function of D?j.

We can solve for Ef DQDPk‘ D?j < (djy + d;, )?] by noting that if 8 denotes the angle
between the line segment connecting units i and j and the line segment connecting unit j with
preclusion area k, then

2 _ 202 2 2 _p2 2 ;

DDPk =« D!J -+ D]Pk - 2 o DlJ Djpkcoso and Dl'Pk = D'J + DJPk -2 D"7 DijCOSO.

Thus

2 2 2 2 2

Also, r2WPk v, < DZDPk < r%VPk is therefore equivalent to

2

o
aerVPkUl+(1—a)r2VVPkUJ S aD?Pk+(1_a)D]2Pk < r-ka + (a—az)(d,-w-%djw)

. 2 2 2 2 2 2 2 . g 2
since C'DiPk +(1—Q)Dij = DDPk—(a —a)Dij and rWPkU.',‘ < DDPk implies both rWPL-Ui <

D?, andr? < D?,.
i, we,u, < Djp,
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Continuing our approximation that D,-Pk, DJ- P, and D,-J- are independent,

9

E[Dpp, | Dfj < (diy +dj, )" = (o’ = ) E[D} | D; £ (dj, +djy, )7]
+ E[ an,,k+(1—a) fpk]

2 2 2 2 2 2 2
arwp ot 1=nyp g < aDip +(1=c)Djp <1iyp + (a”=a)(d;, +d,,)" ]

We note that if a variable U ~ N( g, ¢° ) is truncated above and below such that A < U < B

then Z[A_“} _ Z[B—/‘]
EflU|ASU<LB]=yu+ 'Ba' onO’,
o[274] - o272

and ®(u) is the standard normal integral evaluated at u.

[

u

-7

—

where Z{u) =

3

yar
)

In the first expression, U = Di: . B = (d;,, + d}, LA =0, p = Ef D?j ]and ¢ = \l Var( D,?']. ].

Thus ) d 2
a[o#] - o[ et G Vot

u+ N 2
CI)[( iw +gjw) —#] _ (D[—?p]

o
<
-]
A

£

e
+

\.Q-

3

=
!

g .

‘ 2 2 2 2
In the second expression, U = C'D?Pk +(l-a) HR A= ar';VPkUiﬁ-(l—a)r';VPkUi, B = r";w,l.

2
y

+(a"’—-a)(diw+djw) u o= a/*‘iPk'*'(l"a)“ij* and ¢ = a"’afpk—k(l—a)ga?,,k. The

conditional expectation is evaluated substituting U, A, B, g, and ¢ in the formula given above.

Once 3 is estimated, then X}, and Yy, can be computed and the separation from the
shifted DGZ to the unit locations ¢ and.j can be determined. In this case, the shifted DGZ which
meets the preclusion area criteria is shifted too far away from target unit ! or j to be able to engage

them as an aggregate target. The targets may be able to be engaged as single targets.

d. D%Pk. > r"’WPlC v, for all preclusion areas k, but D'Z’)Pk < r:”'PL- for some k. and
(Xpgz = Xig P+ (Ypgz — Y ) < &, and
2 2
(Xpez = X;0)" + (Ypgz — Y, )" < djy,-

If this outcome occurs, the aggregate target formed from units : and j can be engaged with weapon

2

w. but the DGZ will need to be shifted away from the aggregate DGZ to coordinates (X} 5.
Yhsz) which are at a distance Twp, from the center of mass of preclusion area k. The mixing
parameter 3 is calculated as explained in the previous paragraph. In this case, the shifted DGZ is

not shifted too far away from target units i and j to be able to engage them as an aggregate target.
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Determining the Marginal Distribution of the Actual Ground Zero (AGZ)

Once the DGZ is determined, if a unit is engaged by a nuclear weapon, that weapon will be
aimed at the DGZ. However, the round will generally not impact at the DGZ due to inherent er:urs
in the delivery system accuracy. The weapon system accuracy is described by a Circular Error
Probable (CEP) centered at the DGZ, where there is a 50% probability that the round will impact
within the CEP. Implicit within the determination of a CEP is an assumption that the round
impact point (Actual Ground Zero or AGZ) is distributed as a bivariate normal distribution around
the DGZ with equal variances in the X and Y direction and zero correlation. Also implicit within the
CEP is an assumption that the mean round impact point is the DGZ. If we assume that the DGZ
coordinates X,n, and Yp,», have marginal normal distributions for any specified DGZ. the
coordinates of the AGZ associated with that DGZ are also distributed as normal. Let CXp (., and
CY pgz denote the delivery system error in the x and y direction. respectively, for the specified DGZ
located at coordinates ( Xps7, Ypgz ). Then the coordinates ( X457, Y 455 ) of the AGZ are:

Xagz = (Xpez + CXpgz ) ~ Nl px, . + pCXDGZ’aﬂDGZ + Uéxocz)’

Yucz =(Ypgz + CY¥pgz ) ~NCpy, .+ HeYpay Ypgg T TCYpaz
NOTE: Because of the CEP assumptions stated above, #CXDGZ = #CYDGZ = 0 and UQCXDGZ =

2

o> . .
CYpez

Alternative Calculations

An alternative to numerical calculations or approximations for the probabilities of preclusion.
aggregation, etc. is to solve them through a statistical Monte Carlo approach. It is relatively easy to
generate a set of random variables that are jointly distributed as multinormal (Law and Kelton
[1982], see also Appendix C). Thus a simple statistical simulation can be set up, given the unit
template and variance/covariance matrices, that generates a complete set of unit locations per
replication. For each replication, the separation distances between the units and between the units
and preclusion areas can be calculated to estimate the probability that units are close enough
together to aggregate and are close enough to preclusion areas to cause a DGZ shift. In other words.

we can directly estimate quantities such as the following.
Pprec( il w, a;,a5g,) = P[ ka D'?Plc > I%VPkUi ], the probability that the target unit will not be
precluded from engagement by weapon w.
Hw

Bager(i|w,a;) = P| LJ_J { (D} 2d%,)N( available)n(QD?,,k> rQWPkU.') } }C|w, a; ], the

probability that the unit ¢ will not be aggregated using weapon w.
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We can also estimate the probabilities of DGZ shift, etc. as outlined in the section in Chapter 3

on **Categorizing Possible Qutcomes™.

It is also possible to quickly determine if a unit can be defeated with a weapon w for each unit
in each replication (Chapter 3). This would be a function of aggregation and preclusion: obviously if
weapon w was precluded from engaging unit : in a replication, it cannot be used to defeat 1 in that
replication. The result of this calculation, averaged across all replications, is an estimate of

Pyerear( | w) = P[ Unit t defeated | weapon w used | .

The probability that unit : can be defeated is

Picfeat( 1) = 2 P[ Unit i defeated | weapon w used | P[ weapon w used ].

At first glance, this approach may seem the same as running a standard nuclear exchange
simulation model. The approach is similar, but offers many advantages over the simulation model.
First, the statistical simulation used here is very simple. No events, timing, acquisition, etc. needs to
be represented; the calculations consist merely of generating a set of correlated pseudorandom
numbers, calculating a set of distances, and comparing these distances to values such as rWPk and
d,,- Second, we can easily break the calculations into parts, to determine intermediate results such
as Pprec( 1| w, a;, agg; ), which enable us to gain a greater understanding of what is happening in the
model. Third, we can use these probabilities directly in simple probability calculations to determine
such values as Pdefear( 1 )- The approach described in this paper allows us to see the sensitivity of
the resuits to various factors, such as acquisition, movement, location, weapon, preclusion areas, etc.
very transparently. Finally, once the calculations of location-based values such as
Pprec( 1w, a;, a7g, ), Paggr( 1| w, a;), and Pefeat( 1| w) have been made, it is possible to perform all of
the analysis currently made using the detailed simulation models without having to recalculate these
probabilities. The reason this is true is that current simulfation models, using manually generated
arrays or static templates, implicitly assume that the unit locations do not change over the various
excursions that are run using the model. We can make a much weaker assumption that the
distributton parameters describing the location of the units do not change, and proceed to run all of

the same types of analyses as can be run on the detailed simulation model.

Aun algorithm for estimating the probability parameters using Monte Carlo techniques is

provided in Appendix E.

42




CAA-RP-89-3

CHAPTER 3
MODELING THE IMPACT OF THE PROBABILISTIC ARRAYS
ON THE NUCLEAR EXCHANGE

Section I. CHAPTER SUMMARY
Summary of Contents

In this chapter, we will determine the probabilities associated with each of the engagement
possibilities discussed in Chapter 2. Then, using the distributions of the actual unit locations and the
weapon AGZs, we will determine the probability that a given unit can be defeated using each type
weapon. A scheme of allocating weapons to targets is discussed resulting in a probability for each
unit that a round of type w will be allocated against he unit. Finally, we will average across all of
the available weapon systems to yield the probability that each unit can be defeated. All
combinations of defeat / failure to defeat the individual units thus forms the set of all possible

outcomes of a nuclear exchange.
Summary of the Logic

In order to understand the probability structure, it is important to keep in mind two elementary
facts. If we denote events by A and B (an example of an event is the unit i being located at a

distance greater than the preclusion distance away from all preclusion areas, for a given weapon wu):

(1) The Multiplication Rule: P[ A, B] = P[ A | B ]P[ B ], where the notation “P[ A | B ]"
denotes the probability of event A, given that event B has happened (or is true).

(2) The Addition Rule: P[ A ] = Z P[A|B,;]P[B;] = E P[ A, B, ], where the events 3,

are exhaustive and mutually exclusive (tha.t is, only on B, can be true and at least one B; is true).

An example of the first rule is found in the probability that unit i can be engaged as a single
target with a DGZ shift. P unit i engaged as a single target with a DGZ shift | weapon w is used ]
= P[ unit i engaged as a single target | weapon w is used and the DGZ is shifted ] - P[ DGZ is
shifted | weapon w is used ]. An example of the second rule is found in the fact that if a unit is

13
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engaged as a single target, it must be engaged with a DGZ shift or without a DGZ shift - thus the
events of DGZ shift / no DGZ shift are exhaustive and mutually exclusive. The probability that unit
i can be engaged as a single target using weapon w is : P[ unit i engaged as a single target | weapon
w is used | = P[ unit i engaged as a single target with a DGZ shift | weapon w is used | + P[ unit ¢
engaged as a single target without a DGZ shift | weapon w is used ].

A particular notation is used to keep track of which events are of interest and which events are

given.

(1) Bach unit i has a probability p,,,;;( 1) that it is available. If the availability is given, we use

the notation a; to denote this. The notation a;; is used to denote the fact that both units i and j are

iy
available.

(2) Each unit i may or may not be aggregated. If unit i is aggregated, the notation agg; is used.

If unit i is aggregated with unit j, the notation agg;; is used.

(3) The DGZ for a particular weapon type may or may not be shifted. If the DGZ is shifted, we
use the notation s. The notation ¥ is used when the DGZ is not shifted.

(4) Initially, we condition all of the probabilities on a particular weapon type w, denoted by w.

(5) We denote the opposite of an event (more technically, the complement) by a bar over the
notation. Thus for example 5 denotes “not s’ or not shifted, and agyg; denotes the event that unit

is not aggregated.

(6) We denote the opposite of an probability (more technically, 1 minus the probability or the
probability of the complement) by a bar over the “p” in tle notation. For example if
Pprec(t| w, a;, agg;) denotes the probability that unit i is precluded, given that weapon w is used.
unit i is available and not aggregated, then Pprec( i| w, a;, aGg; ) denotes the probability that unit 1 is

not precluded, given that same information.

Recall each of the engagement probabilities from the previous chapter. If a target unit : is

available, then for a particular weapon type w unit { may be:
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(1) Engaged as a single target with no DGZ shift. We denote the probability that this occurs as

Pengage( 3 | w).

(2) Engaged as a single target with a DGZ shift. We denote the probability that this occurs as

Pengage( i, | w).

(3) Engaged as part of an aggregate target (with unit j) with no DGZ shift. We denote the

probability that this occurs as Dengage( 3,3 | w).

(4) Engaged as part of an aggregate target (with unit j) with a DGZ shift. We denote the

probability that this occurs as pengage( i, 5| w).

(5) Not engaged. Since this will occur if unit 7 is precluded from fire by a preclusion area, we
denote the probability that this occurs as pprec(i|w,a;, 4g;). Unit i cannot be considered for

aggregation if it is precluded, so pprec(i| w, a;, agg;) = Pprec(i|w, a;, agg;) = 0.

In the chapter, we determine the intermediate probabilities (for example, the probability of a
single target DGZ shift p,,;q4€i|w, a;,479;)) step by step as shown in Figures 11,12, and 15 and
combine them to get the engagement probabilities for all weapons w. The probability that a round
of type w is allocated against unit i, denoted as p,,,,4(w|g;), is used to determine the probability
that unit ¢ is engaged (as one of the four engagement possibilities) and weapon w is used to engage

it.

Figure 15 shows how we can complete our determination of the defeat probabilities. For each of
the engagement possibilities, we compute the AGZ to actual unit location distribution and
determine the probability of defeat conditioned on that engagement possibility. Multiplied by the
engagement probability, this yields the probabilities pddm( i, wa,,3,dgg; ), pdefm( i, wya,, s, agg; ).
pdcf“t( 1, W, a;51 9, 899 ), and pdefeat( 1, w, a3, agg,-j) that unit i can be defeated. At the bottom ol
Figure 15, we also compute the probability that unit i is defeated as a bonus target by a round
aimed at unit j, for all j # i. We can add these probabilities using the addition rule to get.
Pdefeat( » w), the probability that unit i is defeated and weapon w is allocated to engage it. If we
apply the addition rule once more, we can sum over all w to get the net probability that unit : is

defeated by a nuclear weapon, p defcut( i).
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Summary of the Resulis

For a potential unit i, the intermediate probabilities of interest are:

(1) The probability that it is available, p,,.;;(?)

(2) The probability that it will not be engaged as an aggregate target, Paggr( t|w, q; ).

(3) The probability that it can be engaged as an aggregate target with a unit j, pager( ij] w, a;

Engage as single CEP Com Subunit§
pute AGZ to Subunits .
target, noshift |3 def 5 =3 det asa
Xagz: Yacz unit distance eteated ? - primary target
Pﬂw 0T w Pdelu( terw. ‘r?' 099/ s
Subuniti
Engage as single cer || computeaczio Subunit defouted asa
t.'Pget' D?Z ’h:ﬂ Xacz: YaGz umit distance defeated ? primary target
5 S, W -
engege Pygtear 1! W 3, % 999)
Engage as
aggnqg:tga target, CEP ~ Compute AGZ to Subuniti :u ?umtl
with j, no shift =P Xacz. Yacz unit distance defeated ? p:r::::‘:::;ﬂ
Puw WX Poeteac ' ™ ‘i B ‘”n/
Engage as i
aggregate target, cep Compute AGZ to Subumti N\Y, \ > Subunit{ 252
with j, DGZ shift XaGz YaGz Lﬂ unit distance defeated ? r primary target
Pengage ¥ 1 P gereat (/% 4 4999,
Compute AGZ; to )
Round »aamed at unit distance Subuniti Z:?::‘:;
subunitjwith AGZ for round aimed defeated ? bonus tar ;: :
X .Y .
a6z, TaGz atsubunitj Pereat ! ™ AGZ[)

Subumti

) P notdefeated

Figure 15. Logic for Determi.iing the Defeat Probabilities for Unit i
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(4) The probability that the DGZ will not be shifted if it is engaged as a single target.

Pro ahiﬂ( iI w, a;, a?gi )
(5) The probability that the DGZ will be shifted if it is engaged as a single target.

P,hiﬁ( i| w, a;, 499, )
(6) The probability that the DGZ will not be shifted if it is engaged as an aggregate target,

Pno ,}.;‘ﬁ( ij| w, 8;;y 899;; ).
(7) The probability that the DGZ will be shifted if it is engaged as an aggregate target.

P,;.,'ﬂ( i | w, a5 099;; )

If a target unit i is available, then the probabilities that it may be engaged with a particular

weapon type w follow:

(1) Engaged as a single target with no DGZ shift.

pengage( L3 I w) = Pamu( i) - Paro ,,l.,'ﬂ( i' w, a;, a?gi) : f’.aygf( il w, a; )

(2) Engaged as a single target with a DGZ shift.

pengagC(ivsl w) = P,wau(i) : p,hiﬂ(i, w, ai,aig,-) : ﬁaggr( il w, a; )

(3) Engaged as part of an aggregate target with no DGZ shift.

pengaye( 17,3 l w) = pavail( i) - pa‘uail(]) * Pno ,hiﬂ( ']' W, @55, a.qg,'j) * Paggr( 1.7' w, a; )

(4) Engaged as part of an aggregate target with a DGZ shift.

pengagc( y,slw) = Pawu(i) : Pa,,au(j) : P,h;ﬁ(ijl W, 455 agg;’j) * Paggr( ] w, a; )

(5) Precluded from engagement.

Pprec(i| w, a;, a7y, ).

Given the four engagement types (plus a bonus target possibility) for a particular weapon type

w, the following conditional defeat probabilities can be computed:

(1) Engaged as a single target with no DGZ shift.
Paefeat(1 | 85 5:050;) = P[( X5z — X;)* + (Y67 — ¥;)? S df,

(2) Engaged as a single target with a DGZ shift.
Paeseat(i | W01 5,059;) = P[(Xlgz — X; )2 + (Y4gz = Y;)? < d}, ).
47




CAA-RP-89-3

(3) Engaged as part of an aggregate target with no DGZ shift.
Piefear(t | W a5 T, 0905 ) = Pl(X467=X)? +(Y67-Y)? <dF, ]

(4) Engaged as part of an aggregate target with a DGZ shift.

Piefeat(1 | Wy 050 8,099 ) = Pl(XYg7—X)? +(Yygz—Y))? <d7, ).

(5) Defeated as a bonus target for round aimed at unit j ¥V j # &

Pdefeat(1 | J engaged, w,a;) = 3° P[(XAGZJ._xi)2+(YAGZj—Yi)2 <df, ]

all j:;ﬁ:
The unconditional defeat probabilities can be computed directly from the above.

The remainder of this chapter simply presents the mathematics behind the probability

calculations.
Section II. DERIVATIONS AND RESULTS
Introduction

Up until now, we have computed the probability distributions for target locations, perceived
target locations, and the distribution of the DGZ given no shift from perceived target center or given
a shift due to aggregation and/or preclusion. If we simply wish to estimate thé locations of the
DGZ’s (assuming the target units were acquired and weapons are available for fire), our task would
be done. However, if we wish to extend the analysis to estimate the impact of the probability
distributions for the nuclear force arrays on the theater-level nuclear exchange, we must determine
the sample space of all possible outcomes of the exchange and determine the probability associated
with each possible outcome. In order to get results, it will be necessary to adopt some simplistic
heuristics for the joint probabilities of aggregation and preclusion. Using these heuristics will enable

us to at least roughly estimate the impact of the unit locations on the nuclear exchange.
Point Targets

The methodology developed in this paper for area targets may also be used against point
targets. Point target defeat criteria are normally stated as an X% assurance that a point target will
receive a specified degree of damage, rather than an X% assurance that at least Y% of an area target

will receive a specified degree of damage. An equivalent way of expressing this point target criteria is
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to require an X% probability that the radius associated with the desired degree of damage will
overlap the point target. Another equivalent formulation is the requirement that the distance
between the DGZ and the point target is less than the radius associated with the desired degree of
damage with a probability of X%.

The last formulation is similar to the defeat criteria for area targets. If we define a point target
as a circular area target with an arbitrarily small radius, and a defeat criteria of 100% coverage, the
probability that this area target is defeated is the same as the probability of defeating the equivalent
point target. Thus, we model all point targets as area targets with very small radii and apply the

methodology previously described.
Evaluating Joint Probabilities

Determining the probability of aggregation, and the probability that any pair of targets can be
aggregated, involves a calculation of the joint distribution of all of the separation distances between
units. This evaluation of joint probabilities also appears when we calculate the probability that one
or more preclusion areas may cause a DGZ shift or eliminate a potential target from engagement.
Our approach to this general problem is illustrated using the example of aggregation. We will use
the following notation:

Let D?J- =[X;p - XjL P+{Y - Y;p ]?, the squared distance between the perceived
locations of units ¢ and j.
Let d;,, = the maximum distance that a weapon w can be displaced from the center of
mass of a targeted unit i and still achieve the commander’s defeat criteria.
Let d;;,, = the maximum distance between the center of mass of targets
and j that will permit weapon w to be used to cover both targets
and achieve at least the commander’s defeat criteria. Clearly,
d;jp =4d;, + djw
=1 if D?J- < d?; (thus targets i and j can be aggregated using w ),

Let Gijw ijw
= 0 otherwise.
Let { A; }7=, denote the set { A}, Ay, ..., Am }.

Let the subscript w (the weapon type) go from 1 to nw.

We also note the following inequalities: for any events A and B,
P(ANB)<min[P(A) P(B)]
max{ P(A),P(B)]<P(AUB)<P(A)+P(B)
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Thus
P( no aggregation ) = P[u:;_i”x i;r'j_l Gijw=0]< min{ {P[Gij = 0] Hi=: },’,‘,‘;1 , and
nw m nw m
P( aggregation ) = P[U U G, =1]< Y. P[G;;, = 1]; thus
=14,j=1 w=1 i,j=1
m nw . nw m
max{ {P[Gijp = 1] =1 }w=1 < P( aggregation ) < Z_:l .Zl P{G;;, = 1]
w=1 1 ,=

Note that unless m, nw, and the probabilities P[ G = 1] are small, the upper bound will be

ijw

greater than 1 and thus trivial. We can also compﬁte the following:

P[ only 1 aggregation (between units 1+ and j) using weapon w ]

< min| P[Gy;, = 1]’{P[lew=0};:1=1 < P[Gy, =1].
(k1)F#(i.7)

Notice also that

P[ 2 aggregations between units ( i, j) and ( k, /)] < min l: P[Gju =1}, P[Gyy = 1] ],
thus

P[ 2 aggregations between units ( 4, j) and (k 1)] < P[G;;,, = 1], and

P[ 2 aggregations between units (i, j) and (k)] S P[Gyp =1],

for any units i, j, k and !/ and weapon w.

As a result, we can provide an upper bound on the probability of aggregation occurring between
any units i and j using weapon w by simply looking at P[ G;;,, = 1], which can be evaluated from

the marginal distribution of D?j.

Let ( ijw )(1) = { (ijw) | P[ G(i,j,w)(1)= 1] = n}:;.x P( G, = 1] } Let ( #jw )(2)
denote the indices of the second largest probability of an aggregation, etc. We can order the upper

bounds on the probability that unit pair ( 1,7 ) forms an aggregate pair for all i,j,w as:

. =1j.
(h3w)(q) “)(m)(m-1) ]
We will use this approach to estimate which target unit pairs (i,7) to consider as aggregate targets.

P[G =1]2P[G =1]2--2P[G,;

(‘rl:w)(2)

If we approximate P( no aggregation unit i | w ) using its upper bound min{ P{G;;, =0] }J'": I
we can avoid the problem that can arise from independence assumptions. For example, suppose Jtﬁeit

there are a very large number of units ( m = 100, say), with all of the units having expected (mean)
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locations far away from the expected location of unit i. We would expect the probability that
D?j > d;;, for each unit j with a mean location far away from the mean location of unit i to be
very large, say 0.99. However, P( no aggregation unit i | w ) under independence is (0.99)'%° = 0.37.
In actual arrays, the units locations are correlated and we would expect aggregation to occur very
infrequently, certainly less than (100-37) = 63% of the time! With independence assumptions,
adding units with locations very far away from the unit of interest can make the probability of no
aggregation very small, which contradicts experience. Using the upper bound of
min{ P{G;

jw=0] };'; ;» on the other hand, will ignore the units far away from the unit of interest

(only the unit that iis;i}iw most likely to be close with the minimum P[G;;, = 0] is considered).
Some random distance pairs will be more dependent than others. The distances D;; and D, are
strongly dependent as they both involve the location of unit i. The distances Dij and Dy,
(1,7)#(k,0), on the other hand, are less dependent as they are related only through the covariances
between i, j, & and [l If the distances are associated (roughly speaking, having positive covariances).
then a lower bound for the joint probabilities is the product of the two (that is, the independent
case). We distinguish between the two cases in our heuristic rules for evaluating joint probabilities.

We also assume that there is a difference between evaluations of distances computed from different

random points for aggregation and distances computed from different fixed points for preclusion.
Our heuristic rules for evaluating joint probabilities are as follows.

1. For multiple comparisons of distances from the same point, use the upper bound of the

smallest distance. Example: P[ r; D?Plc > szP,g v, ] = min{ P[ D?Pk > "ZWPk v, ]}::-1

2. For multiple comparisons of distances from two different points, use the approximatc

lower bound of thre product of the distances. Example:

2 2 2 2
P[{D;j < (di;u +d;,) }” {?DDPk >'2wpkvij2}]
=P[Dj < (d;, +d;,)°]- P[0 Dbp, > rWPkU'.J.]
= P[D} < (d;, +d;,)°]" miﬂ{ P Df)P,c > "2WP,CU,.J. ] }:lz

3. For comparisons between distances computed from different random points for
aggregation and different fixed points for preclusion, use the approximate lower bound of the

product of the distances. Example: D,-J- is the distance between the random points of the locations of
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units i and j (for aggregation), while Di P, is the distance between the random point of the location

of unit i and the fixed points of the preclusion areas (for preclusion). Example:

=P[Dj < (d;, +d;,)°] - P[QD{p >riyp,u ]

Although these heuristics seem reasonable as approximations, the error of approximation is not
known. We are conducting some simulation experiments to verify these rules and estimate the error

of approximation.
Determining the Probabilities Related to Location
For every unit i, compute the following:

1. Calculate p,,.;;(1), the probability that a unit i is acquired and retained as a target until

detonation, as explained in Chapter 2.
2. For every preclusion area k, compute P[ D? P, > 3y P,U, ] and P[ D? P, > riy P, ]

a. Let Pprec(i|w, a;, dgg; ), the probability that the unit will not be precluded from
engagement, given that it is available, can be engaged using weapon w, and it is not suitable for

engagement as an aggregate target; i.e., D:?;- > (d;, +d;, )2 = dzw or j was not available ¥V j#..

However, when we approximate joint probabilities, we assume that
Pl {0 DIp >l p 0{D}>(d;,+4;,)" } 1 = PLO DIp >rlyp 1+ PIDE>(d;,+d;,)" ), thus
P( l? D?Pk>r'€ypk [ D?J->(d,vw+djw)2] = P f;l D?Pk > r'“;vpk ] and we ignore the conditioning
when evaluating P( I? D?Pk > r%vpk ]- Thus
Pprec(iiw, a;,agg, ) = P[ unit i will not be precluded | available, weapon w, D?j > d:f’jw ]
Pprec(i|w, a;,a3g; ) = P[ ? D’?Plc > rzwpk v, ], bounded from above as:

- . _ . . np
Pprec(“wq a;, 499, ) = mkm{ P[ D?Pk > rzl'VPkUl- ] }k:l'
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b. Let p,, ’,"-ﬂ(ilw, a;, 6Jg;) be the probability that there is no shift in DGZ (due to
preclusion) for target i, given that weapon w is used, unit i is available, and there are no suitahle
aggregate targets. By definition, if there is no DGZ shift due to preclusion, the unit 7 is not
precluded. As in Pprec(ifw, a;, dgg; ), we condition on D'f-’j > (d;, + d; )2 but ignore the
conditioning when evaluating the joint probabilities. Thus p,, ,4;4(ilw, a;,agg;) = P[ no shift in

DGZ for target i | weapon w, i available, no aggregation | = P[ ? D? P, > ri, P, ]

. _ . 2 2 np
Pno ahiﬂ( i w, ;s agyi) = mkm{ P( DiPk > l-WPI: ] }k:l'

c. Let p ;.q( il w, a;, aJg, ) be the probability that target unit i can be engaged as a single target
with a shift in DGZ due to preclusion, given that weapon w is used and unit i is available. Again.
we condition on no suitable aggregate targets, D?j > (d;, + d;, ) but ignore the conditioning

when evaluating the joint probabilities.
) oy 2 2 2 2 c
Panipe( | wh a;, 099, ) = P<{ 0 Dip, > fwep v, } n { 0 Dip, > Twe, } )
= P(nD? r3 - P(nD? ?
(R Dip, >rwp,u,l = P(QDp > rwp, |
; "7 = mi 2 2 np : 2 2 np
Ponipe( 1] wr a;, 079, ) = m,:n{ P[Dip, > rwp,u,] }k:] - m,}“{ P[Dip, > riyp, | }lc:]
Note that

P,/,,‘ﬂ( i|w,a;,439;) + P,, ,},,’ﬂ( i| w, a;, agg;)
2 - .y —
:P[TD?Pk>rwpkUl] =pp,.ec(1|w,a,-,agg'-)

3. For every unit j, j # {, compute P[ D?j < (diw+djw)2 = d?jw ].

a. Let G;;, =1 |if Df]- < dfjw, given weapon w and both units 4, j available.
= 0 otherwise.
Then
Paggr( w | available ) = P( no aggregation with weapon w | all units available)
m
- P[ i,jn=1 Gijw - 0]
JFEi
Paggr( w | available ) = min{ P[ Gy, = 0] =1
)

b. Let paggr(i7|w, a;;) be the probability that units ¢ and j can be aggregated, given that
weapon w is used and units i and j are available.

Paggr(ij|w, a;) = P[ D?j < (d;, +d;, )> | w; i, j available ]| = P[G,; = 1]

fjw ™
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c. Let Paggr(1j|w, a;;) be the probability that units i and j cennot be aggregated, given that
weapon w is used and units i and j are available.
Bager(ijlw, a;) = P[D > (d;, +d;, )% | w iand j available ]
= P[ Gl'jw= 0] =1 -~ payyr(ijlw, au )

d. Let Paggr( i|w, a; ) be the probability that no unit can be aggregated with unit i, given that

weapon w is used and unit i is available. This can occur when D?J- > d?._ or when j is not available

jw

for fire planning.

Pager( il w, a; ) = P( no aggregation involving unit i | weapon w; ¢ available )
= P| rJv (D < dg,,) N (Jjavailable ) N ( A DJ'PkZ fwe, U, ) }C | w, a; )

= mem{ P[{ (Dy < dy,) N (javailable) N (N D;p 2 ryp, o) J 1w, a] };’;,

JFi
N (javailable) A (QD;p, >ty p, g ) w ;] J

Paggr(ilwia;) = mjin{ 1 — P{(D; <d;;,)
iF
=1- mJa.x{ P[D; <dj,lwa;] - P[javailable] - P[QDij ZrWPL- Ujlw, a‘-j]};’;l
iF

=1- mJax{ pagyr( ijl'w, a,’j) . pavail(j) : 3?rcc(j‘wv a;, a-ggj ) }Jm=1
i#Ei

4. Find j such that j solves mJax{ Paggr( ij] w, a;) - Pavait(J) * Pprec( il w, a;, dgg; ) }J”f__l This will
SEL
be the unit j that may serve as an aggregate target (along with unit i).

a. For the target pair ( i,j ), compute the proportion a such that the aggregate target DGZ has
coordinates Xpoz = a X,y + (1 - a) X, and Ypgz = a Y, p + (1 — a)Y;;. The formulas

for computing o were given in Chapter 2.

b. For every preclusion area k, compute P[ D% P, > "ZWPk v, ] and P{ D"b P, > rzwpk ]y where
DZD P, = the distance from the unshifted aggregate target (Xps5, Ypioz) to preclusion area ki that

: 2 — \2 2
s, Dpp, = (Xpgz = Xp, )" + (Ypgz = Yp )"
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c. Let Bprec( 7| w, 8 agg,-j) equal the probability that both target units i and j are not precluded
from engagement, given that both are available, both can be aggregated with each other, and they

can be jointly engaged using weapon w. In this case, we condition on D2 < dew Thus

Pprec( ij|w,a ,]aaggv) = P[ n { DDPk > rWPkU N DDP > l'WP U } I D2 < dxzjw ]
We approximate as

- 3 R 2 2 2 1\mP
Pprec( | w, a;;, agg;;) = min { P[Dpp, > rwp,u, | D} < dj,] }k:l

2
iw

To evaluate P[ D%Pk > 1'2WP]c v | D < df ] for any unit pairs i,j, we recall that
ij

DDP' (az—a)D;‘-’j+(l—a)DP + a D?p
WeknowthatE[D%P]=(a2—a)E[D ]+(1—a E[DP]+aE[DP] and it can be

shown that Var[D3} P] =(a’-a)? Var[DUJ + (1—-a)? Var["JfP] + o Var[DiPk +

2(&-a)(1—a)cnv[nf],D2,,] + 2(a*—a)aCov[DE,Dip ] + 2a(1- a)Cov[D‘P, fpk]. I owe

make a simplification for the purpose of evaluation by assuming 1) that DbPk is distributed

normally (i.e., use the normal approximation to the distribution of a quadratic form) and 2) that

2

Gw is approximately normal with:

D;"J, DJP , and D?Pk are independent, then D%Pk given D < ds

Mean: (a2—a)E[D?- DX <d% ] + (1-0a) E[D?Pk] + O‘E[D?Pk] and

i ="gw
Variance: (a®—a) 2Var[D |D2 <d%. ]+ (l—a)ZVar[Dka] + QZVar[D?Pk].

Jw

To evaluate, recall that if a variable U ~ N( g, ¢? ) is truncated above and below such that

A € U < B, then

z
EfU|A<SU<B]=u+

3 ]-@[‘%‘—“
g oa ]
o[272] - o272 }

u2

where Z(u) = ];— e 2 and ®(u) is the standard normal integral evaluated at u.
s

ot
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In this case, U = D}, A = 0, B = d},, 4 = E[D] and ¢* = Var[D}).

Once the mean and variance of D%Pk given D;f;- < d?jw is determined. then

2 2 2 2 -_—
PIDDp, > twp, v, ID5 <45l =

2 2 2
Ywe,u, — E[Dpp |Dj <dj,]
Pl Z> e — for any i,j, i#j, where Z ~ N( 0,1 ).

d. Let p,, shiﬂ( i7| w, 8 agg‘-j) be the probability that there is no shift in DGZ (due 1o
preclusion) for the aggregate target formed from units : and j, given that weapon w is used. both
units 1 and j are available, and they can be aggregated with each other.

Pro shil 91w 055, a995) = P[0 D%Pk > ':;Vpk | Dj <dZ, )

= min { P[ Dhp, > rivp, | D} < d},] e

This is evaluated as given in the previous paragraph.

e. For the aggregate target DGZ at coordinates Xpoy = o X;; + (1 — a) X;pand Yy =
a¥,, + (1 —-a) Y, and the closest preclusion area k away from which the DGZ must shift.
calculate the mixing parameter 3 such that the shifted DGZ has coordinates Xhoz = 8 Xpgz +
(1=23) XP/: and Yyoy = B Ypgz + (1-8) YPL-' The formulas for computing 3 were given in
Chapter 2.

f. Let p,,“ﬁ(ij]w) be the probability that there is a shift in DGZ due to preclusion for the
aggregate target formed from units i and j and the shifted DGZ is still within the maximum offset
distances d;, and d;,, given that weapon w is used, both units 7 and j are available, and they can b
aggregated with each other. Let D? p+ denote the squared distance between the perceived location of
un‘t : and the shifted aggregate DGZ; that is,

Dips = (Xpgz = X1 )" + (Ypgz = Y, )

p,[;,‘fg("j' w, a;, 894, ) =

2 2 2 2 (o4 2 2 2 2 2 2
P<{ A DDPI:>rWPkUij }n{ A DDPk>rWPk } n{ Dipesdi, }m{ D ps<dj, } | D} < diJ«')'

56




CAA-RP-89-3

P,;.,‘ﬂ(ijl w, a;, 699;; )=
2 2 2 2 2 2 2
[P[ Q DDPk>rWPkU'.j | D% < d%,) — P[ A Dpp >rwp, | Djj < djy ]:l
- P[D?ps < d, nD’ pe 44, I Df <di, ).
The latter expression may be evaluated using Bayes’ Law:
P[ DI, <d?, N D?D, <d}, | D§ <df, ]
_ P[D} < df, | Dip. <d?, n DI, <df, ] P(D}y, <d}, ND7p, <df ]
[132 < d2 ]

yw

2 2 2 2
1 - P[ D}, <d}, DI < df,
P[D? < d?, ]

Jw

ij
Ponip (17w, a5, 899;; )=

. 2 2 2 2 2 2
[mkm { P{ DDPk > rWPkUij | Du < duw] }k - = mm { P{ DDPk > Twe, | D?j < dijw] }221]

1-P[D?) <di, nD’D,gdfw]
P[D} < d, ] '

yw

Note that pg..(4lw e, 899:) + Puy ip(lw a5 099;) < P ﬂ %Plc > 1':;4/191c Uy ] =
Pprec( 1] w, a,-j) due to the correction factor P[ D" p < d2 N D2 p* < d“ [ DY,

Determining the Probability that a Target is Available for Engagement
For every unit i, compute the following:

1. Let Pongage( i, 8| w) be the probability that unit i is available for engagement using weapon w with
a DGZ shift, given that weapon w is available to engage the target.
Pengage( 1, 3| w) = P[ i engaged as a single target with DGZ shift | w ]
= P[ i available ] - P[{ nD iP, > Twe, U} N { ﬂD,P > fwp, 1€ w]
p[{ U {(D, <de)ﬂ(]avallable AN 2D, 2 twh,u )}} | w]

pengage( L8| w) pamxxl( 1) - p,luﬂ | w, a, agg,) de"’( ‘l w, a; )

57




CAA-RP-89-3

2. Let pengage( 4 5, w) be the probability that unit i is available for engagement using weapon w with

a DGZ shift.

Pengage( 18, w) = Pa,,au(i) * Prouna{ w]1) * P,h;ﬂ( i|w, 8;,099;) * Paggr( t|w, a;)

3. Let pengage( 4,3 |w) be the probability that unit ¢ is available for engagement using weapon w
without a DGZ shift, given that weapon w is available to engage the target.
Pengage( 1,3 |w) = P[ i engaged as a single target with no DGZ shift | w]
= P[ ¢ available | - P[TDiPkZ Twp, | w]
. P[{ 5) { (D;;<d;, )N( j available )N( l;\ DijZ Twp, v, )} }C | w]

Pengayc( L3 |w) = pamil( 1) - Pno ,}.,‘ﬂ( i|w, a,, a?.‘l,‘) : 5aygr( i| w, a; )

4. Let Dengage( 1,5, w) be the probability that unit i is available for engagement using weapon w

without a DGZ shift.

Pengage( 53, W) = P, 0i(1) * Proyna(Wlt) « Prg gpip( il W, 0,079, ) - Pager( i|w, a;)

5. Let pengage(#7,5| w) be the probability that the aggregate target formed from units : and j is
engaged as an aggregate target with a DGZ shift, given that weapon w is used.
Pengage( if, s|w) = P[ i engaged as an aggregate target with DGZ shift | w]
= P[ i available ] - P[ javailable ]
P{0Dpp 2rwp u } N{QDpp 2 riyp )¢ | Dy<dyy | w o]
- P{{D?p<d}, }n{ DJ?D,sdfw } I Dy<dy,, w a5 ] - P[Dy<dy, | w, a]

pengage( i7,8] w) = pavail( i) - Pwa,'l(j) : pahiﬂ( | w, 8i5 agg,‘j) ‘ Pdgyr( ij| w, a;

6. Let pengage( 7,5, w) be the probability that the aggregate target formed from units : and ; is

engaged as an aggregate target with a DGZ shift using weapon w.

Pengage( 1758, W) = Poyait( ) * Puygit(D) * Prowna( wl47) - P,}.,’ﬂ( ij| w, ;) agg'-j) * Paggr( 1| w, ;)
7. Let Pengage( 17,5 |w) be the probability that the aggregate target formed from units : and j is
engaged as an aggregate target with no DGZ shift, given that weapon w is used.

Pengage( 47,3 | w) = P[ i engaged as an aggregate target with no DGZ shift | w]

= P[1 available] - P[j available] - P[{ T DDP,‘Z Twe, N{D;<d;, } | w a;]

P(1 available] - P[; available] - P( r;w DDPk > fwp, |D; <dgy wa;] - P[D;<d

HJw | w, a;

Pengage( 1,3 |w) = P”a,'l( 1) - Pa,,a,'z(j) * Pao ,),,'ﬂ( ] w, 85 ‘199,'1') * Paggr( ij| w, 4 )
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8. Let pengage( 47,5, w) be the probability that the aggregate target formed from units 1 and ; is
engaged as an aggregate target without a DGZ shift using weapon w.
p¢"§49¢( 1,3, w) = pavail( i) : pavuil(j) ) 'pround( wl 'VJ) *Ppo shiﬂ( l]' W, aij’ aggij )

* Pager( 1| w, a;;).
Determining the Probabilities of Conditional Defeat

Let pdefcat(i | w,a,. 5,ag¢;) = P[ unit i defeated | weapon w; no DGZ shift; i available: no
aggregation | be the probability that unit i can be defeated as a single target, given that weapon w is
used, there is no DGZ shift, and unit i is available for fire planning. If unit : is engaged as a single
target with no DGZ shift, then the DGZ is located at the perceived target center, with coordinates
Xpgz = Xx'L and Yp,, = Y;;- Using weapon w, unit i is defeated if (X, — Xi)"’ +
(Yygz =Y;)? <d2,. Thus

Pucseat(1] w0, 5,099;) = P[(Xygz = X;)? + (Y7 — ¥;)? S df, ]

Let Piefeat( | w,a;, s,4Gg;) = P[ unit i defeated | weapon w; DGZ shift; i available: no
aggregation] be the probability that unit i can be defeated as a single target, given that weapon w is
used, there is a DGZ shift, and unit i is available for fire planning. If unit i is engaged as a singlc
target with a shifted DGZ, then the DGZ is.located at the shifted coordinates X}, = X, +
(1- B)ka and Ypgey = BY;p + (l—ﬂ)YPk. Using weapon w, unit i is defeated if
(X467 — Xi )2+ (Y4ygz — Y; ) < d?,. Thus

Pacseat(1 | w055 5,039;) = P[(Xjgz — X;)* + (Yigz — Y;)* < dj,,

Let p;m.ut(ij | w, 8, 3,a99;;) = P[ units i and j defeated as aggregate target | weapon w: no
DGZ shift; i,j available ] be the probability that units i and j can be defeated as an aggregate target.
given that weapon w is used, there is no DGZ shift, and units i and j are available for fire planning.
If units i and j are engaged as an aggregate target with no DGZ shift, then the DGZ is located along
a line segment connecting the perceived target centers, with coordinates Xpqy; = oX;; +
(l—a)XjL and Ypoy = a¥;; + (l—a)YJ.L. Using weapon w, unit i is defeated if
(X462 ——Xi)? + (Y 6z —Yi)2 < d?w and unit j is defeated if (X,., =X ¥+
(Yy6z—Y;)? < d},. Thus

Paefeat( ¥ | wya;, 3, agg;)

= P {(XAGz-xg)z'*'(YAGz"Y,‘)Q Sd.?w} n {(XAGZ—XJ' )2+(YAGZ—Yj)2 < dj?w H
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Let Dyoreqel ¥ | woay, s ag9;) = P[ unite ¢ and j defeated as aggregate target | weapon w; DGZ
shift; i,j available] be the probability that units i and j can be defeated as an aggregate target.
given that weapon w is used, there is a DGZ shift, and units : and j are available for fire planning. If
units ¢ and j are engaged as an aggregate target with a DGZ shift due to preclusion, then the DGZ is
shifted from the point located along a line segment connecting the perceived target centers, with
shifted coordinates Xyn; = 8 Xpgz + (1 — 8) ka and Yhoy = B Ypgy + (1 = 8) YPk,
where the unshifted DGZ had coordinates Xp, = a X;; + (1—a) XjL and Ypo, = a Y, +
(1—a) Y- Using weapon w, unit i is defeated if ( X}, — X; )2+ ( Yicz — Y; ) < d?u and
unit j is defeated if ( X457 — X;)* + ( Y4gz — Y;)? < di,. Thus

Phefear( ¥ | w, B 8, 099, )

= P[{(X%4gz—X) +(Yigz =Y <di } N {(X4gz—X; P +(Yigz—Y;)’ <d}, }]

Let D yoeqe( | w, a;, 3,a9g;;) = P[ unit i defeated as aggregate target | weapon w; no DGZ
shift; :,7 available | be the probability that unit i can be defeated as an aggregate target, given that
weapon w is used, there is no DGZ shift, and units ¢ and j are available for fire planning. If units ¢
and j are engaged as an aggregate target with no DGZ shift, then the DGZ is located along a line
segment connecting the perceived target centers, with coordinates Xp5, = a X, + (1—a) X'j L
and Ypgz = a Y, + (1—a) YjL . Using weapon w, unit :-is defeated if
(Xagz = X; P +( Yz = Y;)? <d?,. Thus

Paeseat(t | w0y, 3,099;) = P[(X 57 = X;)*+(Y 67 - Y;)? <d},

Let Dy foge( | w,a;, s agg;;) = P[ unit i defeated as aggregate target | weapon w; DGZ shift:
1,j available] be the probability that unit i can be defeated as an aggregate target, given that weapon
w is used, there is a DGZ shift, and units : and j are available for fire planning. If units i and j arc
engaged as an aggregate target with a DGZ shift due to preclusion, then the DGZ is shifted from the
point located along a line segment connecting the perceived target centers, with shifted coordinates
Xbgz = B Xpgz + (1 -08) XPI: and Yhoz = B8 Ypgz + (1 = 8) YPI:’ where the unshifted
DGZ had coordinates Xpoy = a X;; + (1—a) ij and Ypoz = oY, + (1""‘)Yj[,' Using
weapon w, unit i is defeated if (X% 57 —X;)? + (Y% gz — Y;)? < d?,. Thus

Paefeat( i | 05 810995 ) = P[(XYgz — X)) +(Yigz —Y;)’ <d},
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Determining the Probability of Defeat

For unit i, there are three exhaustive and mutually exclusive outcomes:
1. Unit i is not engaged
2. Unit i is engaged as a single target
3. Unit 1 is engaged as an aggregate target

We will consider each in turn.

1. Unit i not engaged. This occurs when:
a. Unit i not available ( B,,,;;,(9) ), or
b. Unit i is precluded from fire ( v i) D,-Pk< "wp, U, ), or
¢. Round w is not available, for any weapon w not precluded
( U { r; D”,lc > Twp, U, N w not available } )
Thus, unit i is not engaged when v Li-J DiPk< Twp, U, U w not available } U { 1 not available }

2. Unit 1 engaged as a single target. This occurs when:
a. Unit 7 available ( p,,,;(1) ), and
b. Unit i is not precluded from fire ( U Q D‘sz T'wp, U, ), and
¢. Round w is available for any weapon w not precluded
( Y { l? Dipk > Twp, U, N w available } )
d. Unit i cannot be ¢agaged as an aggregate target with any unit j. This occurs when:
(1) Dy; > dy, or
(2) Unit j is not available ( §,,.;(7) ), or
(3) Unit j is precluded from fire ( U LI:J Djpk< Twp, U, )
]
Thus unit i can be engaged as an aggregate target with any unit j, given unit i available, i not
precluded and w available, when
(D <dg,) N ( j available ) N ( T Djpkz r_WPlc U; )s
thus unit i cannot be engaged as an aggregate target with any unit j, given unit i available, i not

precluded and w available, when

{ U {( Dy < dy,) N (javailable) N (D;p, > rywp, y) ) }c.

Let us denote (XAGZ_xi)2+(YAGZ_Yi)2 as D, ;. Given a weapon w, unit i is defeated as a
single target when

(D4; £d;, N iengaged as a single target | w)
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with probability
P[ D,; < d,, | i engaged as a single target, w] - P[ i engaged as a single target | w]
which equals V
P[ Dy, < d,;, | DGZ shift, i single target, w] - P[ DGZ shift, i single target | w]
+ P[ D4, < d,, | no DGZ shift, i single target, w] - P[ no DGZ shift, i single target | w]
Thus, P[ iengaged as a single target with DGZ shift | w] =
P[ {iavailable} N {TD‘PI;Z Twe, Ui} n {LkJD"Pk < rwpk}
n{ U { (Dy<dgy, )( j available )N( 0 D;p, > rwp, v ) } }c | w]
= P[ {iavailable} N {Q{ D‘sz Twp, Ui} N { LkJDiPk <rtwp} }
n{ Y { (Dy<dy, )N( javailable )N( A D;p, > riwp, o) } [ | w]

By assumption, the probabilities that i is available, that it is not precluded but the DGZ is
shifted, and that it cannot be aggregated with any unit j are independent given w. Thus
P[ i engaged as a single target with DGZ shift | w]
= P[ i available ] - P[f;l{ D'-sz Twp, Ui} N { LEJD‘Pk < rwpk} | w, a;]
. P { Y { (Dy;<dy, )N( j available )N( 0 Djp, > ryp, g ) ) }c | w, a; ]

= Payait(?) - p,h,’ﬁ(ilwv 8;,699;) + Paggr( il w, a;)

Similarly, P[ i engaged as a single target with no DGZ shift | w] =
P[ { i available} N {QD"P;‘Z Twe, vl N {QDiPk > rWPlc}
1
= P[ {i available} n{Q{D”’kZ rwpk} .
n{ U { (Dy<dy, )N( javailable )N(Q D;p, > riyp, ) } J 1w, 6]

By assumption, the probabilities that i is available, that it is not precluded and the DGZ is not
shifted, and that it cannot be aggregated V;Iith any unit j, are independent given w. Thus
P( i engaged as a single target with no DGZ shift | w]
= P[ i available | 'P[QD‘P,‘Z rWPk' w]. |
: p[{ U { (Dy<dy, )N( j available )A( 0 Djp,> riwp, g ) } }c | w, a; ]

= pauail( l) ‘ pno .gluﬂ("w? al'$a-g-gi) ’ Eagyr( 1|w9 al‘ )
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3. Unit i engaged as an aggregate target. This occurs when:
a. Unit i available ( p,,,;;(?) ), and
b. Unit ¢ is not precluded from fire ( Y 1;1 D,-sz Twp, U, ), and
¢. Round w is available for any weapon w not precluded, and
( y { r; D,-pk > Twp, U, N w available } )
d. Unit ¢ can be engaged as an aggregate target with some unit j. This occurs when:
(1) D; < dj;y,, ond
(2) Unit j is available ( p,,,;(J) ), and
(3) ﬁnit j is not precluded from fire ( {J r;\ D”,kz Twp, U, ).
Thus unit i can be engaged as an aggregate target with any unit j, given unit ¢ available, i not
precluded and w available, when ( D, < d;;py) N (7 not available ) N ( fk\ D,-sz 'wp, U, ), and
e. The aggregate DGZ is not precluded from fire ( U T Dp sz Twep, U, ), and
f. If the aggregate DGZ is shifted, the shifted DGZ must still achieve coverage over units .
and j, when ( D?p,<d?, ) N (D?p,<di, )
Recall that (X, 57 ~X;)?+(Ygz~Y;)® = D4;. Given a weapon w, unit i is defeated as an
aggregate target when
(D,4; <£d;, N ijengaged as an aggregate target | w )
with probability
P(D,, <d,, ]| ij engaged as an aggregate target, w | - P[ ij engaged as an aggregate target | w)
which equals
P[D,; < d;, | DGZ shift, ij aggregate target, w] - P[ DGZ shift, ij aggregate target | w]
+ P[ Dy, < d,, | no DGZ shift, ij aggregate target, w] - P[ no DGZ shift, ij aggregate target | w]

Thus, P[ ij engaged as an aggregate target with DGZ shift | w] =
P{ { i available} N {r;nD,.Pkg Twp, v.} .
1
2 2
N{NDpp, 2 rwp, U;,-} N{YDpp, <rwpl N {Dlps<di, } N { D} pe<dl, }
n{ (D;Sdy5, )N( j available )0( 0 D;p, > typ, o) }lwl
Since { '?DDP,_Z fwe, v} N D?D,Sd;‘-’w } n | D;T’D,sd;f’w } cannot occur unless
{ ?D‘PI;Z Twe, v} of TDj-sz Twe, .} occurs, we can drop the latter two terms.
: J
S 2
= P[ {iavailable} N {?DDP,‘Z twp, Us’j} N { llJDDPk < rwpk} } N { D‘.D,Sdfw
N { DfD,sdfw } N {javailable} N { D;;<d;;, } | w]
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By assumption, the probabilities that i is available and not precluded, that j is available and not
precluded, and the probability that the aggregate DGZ is shifted and that i can be aggregated with
unit j, are independent given w. Thus

P[ i engaged as an aggregate target with DGZ shift | w]

= P[ i available ] - P[ j available ] -

P({ nDDP 2twp,u, }n{D’D, <d? }n{DZD, <d?, 1n{ UDpp, <twp, }n{D; <d;;, } 1w, a;]
= P[ xavallable] P[ j available ]
[{ﬂDDP >rWP U, } n{ nDDP > Twe, 1€ D;;<d;, | w g
P[{D20,<d }n{ D*’D,gdjw ! D <dw | w] - P[D;<
= Payait( D) * Payait(J) * P,/..‘ﬂ(']|wv ,'jsag.‘l.'j) * Paggr{ ij| w, a;

iy = uw | w, ax]

Similarly, P[ i engaged as an aggregate target with no DGZ shift | w] =
P[ { i available} N {ﬂD,P > Twe, U} n {ﬁDDP > Twep, }

ﬂ{ (D;;<d;, )N( ]avaxlable )ﬂ( ﬂ D]P > T'we, U, ) } | w)

Since { ﬂDDPk> Twp, } cannot occur unless{ﬁD "WP U} N {ﬂD rWPkU} occurs.
we can drop the latter two terms.
= P[ {1 available} N {j available} N {ﬁDDP > twe, }n { (D;<d;;,) | w)

By assumption, the probabilities that i is available and not precluded, that j is available and not
precluded, and the probability that the aggregate DGZ is not shifted and that i can be aggregated
with unit j, are independent given w. Thus

P[ ij engaged as an aggregate target with no DGZ shift | w]

= P[ i available ] - P[ j available ] - P[{ n DDP > Twp, }n{D,

}ow, gy

i < wa ty ]

= P[ i available ] - P[ j available ] - P[ ﬁ DDP > Twe, | D, <d;, w] - P[D;<d, | w a;]
= Pavait() * Pavait{d) * Puy alu'ﬂ( ijlw e i ‘199,,) Paggr( ij| w, 8;; )

4. Summary.

a. Given a weapon w, unit 1 is defeated as a single target with probability
P( D4, < d;, | DGZ shift, i single target, w] - P[ DGZ shift, i single target | w]
+ P[ D4, < d,, | no DGZ shift, i single target, w] - P[ no DGZ shift, i single target | w ]
= Pde/ea‘(i | w, a,, 3, 0.71'9,') : Pauu( 1) - P,h,'ﬂ( i| w, a;, 0_9'9,') - Paggr( i| w, a; )
+ Paefeat(i | 008, 5,09;) * Paygit() - Pro anipe 110 8;,079;) - Pager( i{w, a;)
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b. Given a weapon w, unit ¢ is defeated as an aggregate target with unit J with probability
P[D,; <d;,| DGZ shift, ij aggregate target, w] - P[ DGZ shift, ij aggregate target | w]

+ P[D,,; <d,, | no DGZ shift, ij aggregate target, w] - P[ no DGZ shift, ij aggregate target | w]

= pdefeat(i l w, aij’ $, aggij) : pavail( i) ) pavail(j) ' psln'ﬁ( ijlw’ a:’j’ aggg’j) ) paggr( ’]l w, a,'j )
+ Puefear(t | 1855, 5,8995) * Payait(?) * Pavait(3) * Pao ship( 4| @, 855, 899;5) + Paggr( ij]w, a5)

c. If we select j such that j solves max{ Paggr(ij| @, ;) « Payir(7) - Pprec( | ws a;, dgg; ) }szl

J '

JF

then pengage(t|w) = Paoai(i) © Dorec(tlwoa, ddg;) - [ 1 — Payeit(d) * Porec(Jlw, a;, 44g; )

* Paggr(ijlw, ay) ]. We note that the event with probability Pprec(ij| w, a;;, a9g;) implies the events
that have probabilities Pprec(i| w, a;, 6Gg; ) and Bprec(J| w, a;, dgg; ) (i.e., the lack of preclusion of
the aggregate target i implies the lack of preclusion of the individual targets : and j). If we
approximate

Pengage( 171®) = Poyoit( 1) * Poyait(F) * [Pro shipe( 1w 818995 ) + Pypin( 9] wi 0y a9g;)) -
Paggr(ij| w, a;;) with

Pengage( jlw) = Pauu( i) - pavail(j) : ﬁpreC(il w, a;, 4gg; ) - T)'prec(j( w, a;, a—ggj ) -
Paggr( ]| w, aij)’ then

Pengage( 1| W) + Pengage( 7] w) = .Paw'z( i) - Pprec(t| w, a;, dgg; ).

In other words, the probability of engagement of unit i as a single target or as an aggregate
target (given w) is approximately the probability that the unit is available and not precluded. The
actual probability of engagement given w will be slightly less, due to additional requirements for an
aggregate target to be engaged (the aggregated DGZ must meet both preclusion and minimum

coverage requirements).
Allocating Weapons to Targets

We are interested in the probability p_,,.;(w|a,), the probability that weapon w is available to
engage target unit i, given that unit i is available, and the probability p. ,..(w] a; ) the
probability that weapon w is available to engage target units i and j (as an aggregate target), given

that units i and j are available.
Because the number of potential target units is much larger than the supply of available
weapons, the probability that a weapon w can be allocated to an acquired unit i depends not only on

the unit’s priority as a target, but also on the actual number of other target units of equal or higher
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priority that are available as potential targets. The weapon allocations, therefore, are highly
dependent between units. We can estimate the marginal probabilities properly, taking into account

this dependence, using either of the two approaches given below.

Given any realization of the target unit set available for planning from all units 7 and aggregate
pairs i,j, it is possible to determine an assignment of weapons w such that the greatest numnber of
high priority targets are engaged. This allocation can be accomplished using any doctrinally defined
allocation scheme or a standard ‘‘assignment’’ type linear programming (LP) code. Unfortunately.
there are 2m2 possible combinations of m* binary variables representing the Jefeat / failure to defeat
each unit, so it is not feasible to determine all possible weapon allocations for each potential target

unit for large m.

An estimate of p_ ..(w|ae;) can be formed by drawing binary random variables using the
probabilities pengage( 37| W) = Ppengage( 4,3 | W) + Pengage( t4, s| w), for all unit pairs 1,5 = 1, ... m. -
For those units i,j where the binary variable for engagement as an aggregate target is zero, draw
another binary variable against pengage( k| W) = Pengage( 5,5 | W) + Pengage( &, s|w), fer & = o
Assign available weapons within range (based on some allocation scheme such as top-down or
bottom-up yields) to the targews with positive binary variables, continuing until all available
weapons are assigned. This forms an estimate of tHe joint probability P[ unit i is available for
engagement using weapon w and weapon w is available ). If we repeat this process n times. we
average out Pengage(i| w) and pengage( ij| ) and form estimates p_,. . ,(w|a,) and ﬁro,,nd( w| a;) of

Proung( wla;)and p_ . (w] aij) respectively.

In developing a Monte Carlo estimate of the probability (by weapon type) that a round is
available for a given target unit, it is necessary to draw against the probability that the target unit
is available for fire. Let {g denote the event that unit i is engaged as a single target and let i; denote

the event that unit i is engaged as an aggregate target. P{ ig| w] = P[ {i available} N {ﬁDl P, >

Twp, Ui} N { (D]._ i Al j* available )N ( n D. j* P2 rWPk L) } | w] = pengage( 45| w
+ Pengage( i8] w) = pcngagc i|w), where j* maximizes paggr(l]l W a5) * Paya(s) - pp.,.cc(]l
w, a;, 439 ) } Slmllarly. P[ig| w] = P[ {1 available} N {ﬂDDPk> twe, u, } N { D2D,<d } N
{ D ,<d2 W1 0 {j* available} N { D. ._du.w Jlw]= pmgu,,(u,s[ ) + Pengage( 13,8 w)

= p,,.g,,,e(zjl w). PligUig|w] =Plig|w] + Pliglw] —PligNig|w]
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Note that
PlisNig|lw] =P {{ i available } N { ﬂD,-PkZ T'we, U;‘} N {(Dij‘sdij‘w)n( ;¥ available )
N(QDup2twp,u,) o409 {iavailable} n (QDpp 2 twp, v}
N { D} s<d?, }1n{ D]?.D,gdj,w } 0 {;* available} n { Dy#<diw, } ¢ 1wl
which includes the terms { { D« < dij"w } N {j* available } N { r; D. sz Twe, U } }c N
{ { 0 DDP,:Z Twe, U{j*} N {;* available} N { Dij‘sdij'w } } If we continue to assume that

{ ? DDP,‘Z Twe, Uij"’} implies { r; DJ.. sz Twe, Uj* }, then we have a probability statement of
the form P[ A® N A ], which equals zero. Thus P[ is U igjw] = P[sg|w] + Plig|w] =
Pengage(i] W) + Dengege(ij] w). In practice, we always determine a single j for each i such that )
maximizes { Paggr( 17| w, 85) * Payait(7|w) - Pprec(jlw, a;, agy;) }, so there is only one target unit

to consider as an aggregate target for each unit &

To develop a Monte Carlo estimate of the probability (by weapon type) that a round is
available for a given target unit, we begin by generating realizations of single and aggregate target

sets. To do this, we draw against the probability that the target unit is available for fire as follows:

ALGORITHM:
1. For each target unit i, t = 1, ..., m,
2. Draw U; ~ Uniform( 0,1 ).
3.  For each weapon type w, w = 1, ..., nw,
4 Using j maximizing {ﬁmr( Ylw a;) » Payaulilw) - Pprec(jlw, a;, agg;) }»
if U; < pengage(i| w) + Pengage(ij] w), let B(4,w) =1
5 Also if U; < pengage(i] w), let A(i,w) =1
6. End if
7. Endloop on w
8. End loop on :
9. The available target set is generated as follows:
If B(i,w) = 0, target unit ¢ is not available for fire
If A(i,w) = 1, target unit i is available for fire as a single target

If A(i,w) = 0 and B(, w) = 1, target unit i is available for fire as an aggregate target

Some alternative approaches involving bounding the probability that a weapon w can be used to
engage unit i exist but may not yield sufficiently tight bounds for the purpose of estimation.
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Formaulas for the Probability of Defeat, Given Weapon W

Let pdefut(ﬂ w) = P[ unit i defeated | weapon w ] be the probability that unit i is available
and can be defeated, given that weapon w is used. Thus we are averaging over the probability that
unit 1 is available, that it is engaged as a single or aggregate target, and that the DGZ is or is not

shifted.

pdefea.t“' w)

= P[ unit i defeated as a single target { w] + P[ unit i defeated as an aggregate targec | w |
P[D,,; < d,, | DGZ shift, i single target, w] - P[ DGZ shift, i single target | w ]
+ P[ D4, £ d,, | no DGZ shift, i single target, w] - Pl no DGZ shift. i single target | w ]

+ P[D,, < d,, | DGZ shift, ij aggregate target, w] - P[ DGZ shift, ij aggregate target | w ]
+ P[D,; < d;, | noDGZshift, ijaggregatetarget, w] - P[ no DGZshift, ijaggregatetarget | w]

pdcfeat(” w)
= Pefear(t | 85 $699;) ¢ Poyait(4) - Popipe( il w, a;099;) - Baggr( i|w, a; )
+ Pacsear(V | w8, F,699;) * Payait( D) * Prug sning( il w1 6;,859;) - Pager( il w, a;)
+ pdcfeag(i | w, 8y 5 agg,-j) * Pavait( 1) * Payait(9) - Psh,'ﬂ( ij| w, a5, agg‘-j) - Paggr( 7| w, a; )
+ Pd,f“g(i [ w ;5 3, agg'-j) " Pavait () * Puyait() * Pryo ,,l,.'ﬂ( i7| w, ) 099,',') * Paggr( 17| w, a; )

ptiefcat(i| w)
= Puefent(t | w,a;, 8,079;) - Pengage(ds|w) + Pefeat(? | w,a;,3,099;) - Pengage( 1,5 |w)

+ Paefear( | W15 8,899;;) - Pengage( 18| w) + pyp (1] w65, 5, 899;) - Pengage( 15,3 | w)
Estimating the Probability that a Unit is Defeated

Given the estimate of the probability that a unit i is available for engagement by weapon w.
Pavait( 1l w), and the probability that weapon w will be allocated to that target, p,,,.4( w|i), it is
possible to estimate the probability that a unit is defeated. When the number of rounds available is
constrained, the probabilities of defeat are dependent between the various units, with a joint
dependence that depends on the total numbers of higher priority units being defeated (that is. the
probability that unit i is defeated given that many higher priority units ¢ -e defeated is less than the

marginal probability that unit i is defeated). However, this generally becoms- a problem only when

we look at extremes, where almost all or almost none of the units are available for engagement. The
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effect of this dependence will be to alter the joint probability of many events across the theater, but
it should not change the determination of the modes within partitions of the sample space (Chapter
1), nor will it be important when examining smaller subsets of units. Caution in interpreting the
joint results of a laydown should be exercised when using this approach as a detailed model

surrogate.

If we consider the probabilities independently between units, we can estimate the probability
that any unit i can be defeated as follows. Let Piefear( b w) = P[unit i defeated using weapon w] be
the joint probability that unit i is available and can be defeated using weapon w. In this case, we

remove the conditioning on weapon w.

Phefeat(® W)
= { Paefeat(V | W28y $699,) - Puyai(1) - Pypipe(ilwya;,a79;) + Paggr( t|w, a; )
F Pefear( 1 W 85yF5699;) * Payait(?) * Prg ship(11 @, 8;,079;) « Pager(i|wya;) }
* Pround( | ;)
+ { Paefeat(t ] W 2555 $0995) * Puyair(D) * Payait(3) + Popip( 1w, 85, a99;5) - Pager( if]w, a; )
+ pdejeat(il w, a‘-j,?, agg,-j) : Paua,‘l( i) - Pawu(j) * Pro ahift( i w, a4 aggij) * Paggr( 7| w, a'-]-) }

) pround( wl aij

pdefeat(i’ w)
= Piefoar(i | 85 3,070;) - Pengagel 8, 0) + Pyppa(i | 0,8, 077, - Pengage( 5, 0)

+ Piefear(t| W85 5,899;:) - Pengage(ih sy w) + Pleear(? | w,a;;,7,099;:) « Pengage( 1,5, w)

The probability that unit i can be defeated, denoted as pdefeat(i), is simply

pdefut(i) = Y P{ Unit i defeated using weapon w ] or
w

pd!f“‘(i) = %: pdefca.t(i’ w).
Bonus Effects

If desired, the probability that a unit may be defeated can be adjusted to include bonus effects.

that is, the probability that unit i is defeated due to a burst aimed at unit j or aggregate target jk.

Let ( X462+ Y,z ) denote the coordinates of the AGZ for the weapon fired at unit j, and let
J j
D?AGZJ- = { XAGZj_ X, )2+ ( YAGZJ.— Y, ). The coordinates ( XAGZ].' YAGZj ) will depend upon
whether j was engaged as a single or aggregate target with or without a DGZ shift. Thus
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pde/“‘(d ASZJ, w) = P[ D?AGZJ» < d?w [ AGZ). w} and
Paefear( b AGZ,, w) = P( D?AGZJ < d?w | w, a,s. 479, | - Pengage( 7,8, w)
+ P[ D?AGZ) <d}, | w 4,5, 499, ] - Pengage(,3, w)
+ P( D?Aczjk < d?w | w, a5 S, aggjk] * Pengage( 2k, s, W)

+ P D?AGZ]Ic < d?w | w, a],?,aJ'ng] * Pengage( 75,3, w)

The total probability of defeat will be

nw m
pdefeat“) = Z, pdcfcat(l‘ W)+ Z] pdc/eat“’ A("ZJ‘ w)
w= =

17
It is anticipated that, although bonus damage may be realized, the probability that a unit is

defeated due to bonus damage will be very small, and normally may safely be ignored.
Estimating the Sample Space of All Possible Quicomes of @ Theater Nuclear Ezchange

If we regard the outcome of a theater nuclear exchange upon each unit from the requirements of
the defeat criteria, we can define the outcome of the exchange on unit 1 as a binary variable O,.
where O, = 1 if the unit is defeated; 0 otherwise. Given the assumption that the outcome is
independent between units, the outcome of any exchange is simply a set of 0’s and 1's with the
probability that any O, = 1 equal to pde[wl(z), the probatility that unit 1 is defeated, : = 1, .. m.

Given m units, there are 2™ possible outcomes.

Generally, the commander will desire at least a certain percentage of units be defeat«] in order
for the employment of nuclear weapons to be considered effective. We can define another hinary
function of the random variables Q, o( Q ), such that ¢( Q ) = I if the commander’s objective i~
met: ) otherwise. Clearly o( Q ) is nondecreasing in Q. The function © may be regarded as identical
to a structure function of a coherent system in reliability theory (Barlow and Proschan [1981]): thus

we can use results from coherent structure theory in our analysis of the nuclear exchange issue.

For example, if any k out of m units must be defeated in order for the commander’s objective o
bP. met, OD( (_) ) = ( (); ()'_, ()k )ﬂ ( Ol ():) ()k~l Ok+] )u ' M ( Om-k-#—l ' Onx )‘
for all possible subsets of size k from the m units. 1 < k < m.

where(xl;ﬂ(x,):.l—(l—xl)(l—x}).
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Furthermore, we can bound P[ ¢( O ) = 1] by ( Barlow & Proschan [1981] p. 31 ):
P[O.=1] < P 0)=1]< i P[O.=1],
1 Sn:'a_é npath .2;. LO; s Ple(Q) Is 1 Sn?sms ncut ,~'€11J€3 Lo ]

where P, denotes one of the npath =( T ) possible min path sets (in this case, a min path set is

any set of k units), K, denotes one of the ncut =( ) possible min cut sets (in this case. a

m

m-k+1

min cut set is any set of m-k+1 units), and || X; = 1 =] (1=X;). If we let po(:) = P[O; =1].
i i

and number the units such that po(1) < pe(2) < --- < po(m), then

m m-k+1
-k

T P[O;=1] = 1 Ipo( min 1L P[O;=1] = J_J7 Po(1) .

max 1) ;
1 € r < npath icp, 1=m-k+ 1 <5 € ncut EE,

This example shows how we can estimate (through bounds) the probability that the
commander’s objective may be met. It may be the case, however, that it makes a difference in the
battle that follows the nuclear exchange which units are defeated in the exchange. Or, more simply.

it may be how many units are defeated across the theater which makes a difference.

For example, suppose that there are 20 opposing divisions in a sector of combat. Qur best
judgement, given the tactical and operational situation, is that the defeat of at least 7 divisions out
of the 20 will be required to avoid loss of territory (stabilize the FLOT - which may be the
commander’s objective). However. if 14 or more divisions are defeated. an opportunity occur. not

merely to stabilize the FLOT but also to conduct a successful counterattack. In this case, if O, = |

of division 1 is defeated, 1 = 1, .... 20, there are 2°° possible outcomes. We can partition the sample
. . 5./ 9 o

space of possible outcomes into the 3 ( -kO ) outcomes where 6 or fewer divisions are defeated. the

S k=0 - 20 /9

3 ( "kO ) outcomes where 7 or more but less than 14 divisions are defeated, and the 3 ( -kU >

k=7 k=14
outcomes where 14 or more divisions are defeated. From each of the three partitions so created. one

realization can be selected to be used as input to a theater-level combat simulation such as
FORCEM. FORCEM or a similar model will then be run three times using each of the three nuclear
outcomes as an input. If our assumption about the impact of defeating different numbers of divisions
is correct. the three battles simuiated in FORCEM using different outcomes should yield noticeably
different results. The response surface estimated using these three FORCEM runs should provide a
better representation of the variability possible in theater-level combat where nuclear weapons are
520

employed than a random selection of three possible outcomes from the possible (and certainly

hetter than selecting a single FORCEM run).

Estimating the sample space of ail possibie outcomes as part of the input to a low resolution

deterministic theater-level simulation is discussed in more detail in Youngren {1989c].
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CHAPTER 4
SUMMARY

In this paper, we have provided a model for representing tactical nuclear warfare at the theater
level. It provides either an analytic or a Monte Carlo solution to the representation of the effect of
the exchange on each potential nuclear target. In doing so, the model addresses two current

problems in modeling nuclear weapons exchanees at the theater level.

The first problem is the identification of the locations of small, lower level units, such as
companies or battalions, within theater-level conventional scenarios or models which track units at
the divisional level. When target aggregation and preclusion are considered, the actual location
attributed to these units will make a difference iu determining what weapons may be used to engage

which units in the theater.

The current approaches to identifying these small unit locations are to either specify stylized
arrays or templates, based on doctrine, which are then applied to all divisional-sized units, or to
manually generate a single, specific array. Both of these approaches fail to take into account the

variability inherent in the actual locations that might be realized in any specific battle.

QOur solution to this problem is to treat the small unit locations as unknown, and to describe our
uncertainty about these locations through probability distributions. We start with prior multinormal
distributions for small unit locations based on expert opinion, and then update that information by
generating many different array realizations. We carry forward these distributions to account for the
possible shifts in Desired Ground Zero (DGZ) due ‘o target location errors, aggregation. and
preclusion. Errors in weapon delivery systems are accounted for through the distribution defined by
the Circular Error Probable (CEP) and are matched with the DGZ distributions to form
distributions for the Actual Ground Zeros (AGZ) for nuclear weapons that may be employed within
the theater. From the distributions of the AGZ and the unit location, the distribution for the level of

damage achieved against the unit can be derived.

The second major problem lies in the interface between theater-level nuclear analyses. which

may use the probabilistic arrays developed above, and theater conventional battle sim alations.
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which tend to be expected value models. An expecte(i value model demands a single input to
represent the effect of a nuclear exchange, which is carried forward into simulation of the post-
nuclear battle. However, a theater-level nuclear exchange may generate many different outcomes
which will have a significantly different effect upon any post-nuclear battle. We use the probability
models deveioped in this paper to estimate sets of possible nuclear exchange outcomes, which can be
partitioned into sets that have a significantly different effect on the conventional battle. The
expected value simulation can be run several times, once for each set of outcomes, to capture the
variability inherent in the nuclear exchange and predict the effects of that variability upon the

conventional battle.

The probability models described in this paper may be used in three different ways. First. they
may be used as a research tool to estimate the sensitivity of exchange outcomes to the various data
and assumptions included in the model. Second, they may be used as a surrogate for detailed.
complex simulation models of nuclear exchanges such as NUFAM III. Finally, the models may he
used to estimate the sample space of all possible outcomes of a theater nuclear exchange to decide

which outcomes should be provided to theater-level expected value models.
Implementation

In order to implement the model, we begin with the steps given immediately below. These are

followed by procedures which vary, depending upon how the model is to be used.

1. Based on a conventional theater-level scenario, or the output from a conventional theater-
level model, determine thc appropriate time to model the use of theater nuclear weapons. This is a

judgment that becomes part of a study or analysis framework.

2. From the conventional theater-level scenario or model output, extract information on
major unit (e.g., divisions) locations and strengths. Determine the appropriate parameters tc use to
model the acquisition and movement within the timeframe of the nuclear exchange. These may he
generated from a separate model, using the scenario at the time of the exchange (for additional

information, see Youngren (1989 b.c}).

3. Match the appropriate multinormal distributions to each of the major units in order 10

describe the probability distributions of the locations of the subordinate units (e.g.. companies and
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battalions). The distributions will be based upon a doctrinal template for that unit, which speciftes
the mean locativns for the units, and variance/covariance matrices generated from expert opinion

and data gathered from manual arrays.
a. Use as a Research Tool

If we are going to use the model as a research tool to estimate various paiameters pertaining to
specific units and see how these parameters vary with different input data, assumptions, etc., we

would continue to implement the model as follows:

1) For the units of interest, use the procedures contained in this paper to calculate measures
of interest such as pengage( i, 3| W), Pengage( 1,5 | W), Pengage( if, 8| w), and Pengage( i, | w). This can
either be done directly, using the procedures outlined in Chapter 3, or through a Monte Carlo
estimation technique (Appendix E). The input data and assumptions can be varied as desired to

determine the impact on these measures.

2) For the units of interest, determine the probability that unit i can be defeated, p ddea!(:).
This can either be done directly or through a Monte Carlo estimation technique. The input data and

assumptions can be varied as desired to determine the impact on the defeat probability.
b. Use as a Surrogate for Detailed Simulation Models

If we are going to use the model as a surrogate for detailed simulation models to estimate the

effect of a nuclear exchange, we can implement the model as a stochastic simulation:

1) Use the multinormal probability distributions for unit locations to generate realizations of

actual and perceived unit locations.

2) For each unit, draw against the probability p,,,;; that it is acquired and can be retained
as a target at least until the time of detonation. The procedures for calculating these probabilities

may be found in Youngren [1989a,b].

3) For the acquired units, determine if they can be engaged by various weapons w; taking

into account aggregation and preclusion issues.
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4) Allocate the available weapons against the realized set of available targets, using any

preferred allocation scheme.

5) Draw against the weapon reliability and delivery errors to determine the AGZs for the
weapon. Assess damages resulting from detonations occurring at those points (a further draw may be
made against the probability of a ‘‘dud” round, if desired). For each unit, determine if it was

defeated.

6) The results of the damage assessment represent the effects of the exchange against
targeted units, and may be analyzed accordingly. As a stochastic simuiation, this process should be

repeated multiple times with different random number streams.

Alternatively, we can use the model as a surrogate for detailed simulation models using the

probability estimates:

7) For each unit, determine the probability p,,.;; that it is acquired and can be retained as

a target at least until the time of detonation.

8) Use the procedures contained in this paper to calculate measures of interest such as
Pengage( 3, 5| W), Pengage( 1,3 | W), Pengage( 1, 3| w), and pengage( #5,5 | w). For accuracy, we recommend
that a Monte Carlo estimation technique be used. This estimation procedure need only be performed
once, provided that the distributions of the unit locations do not change. Use the p . ., probability

to help determine the target unit pairs to be considered for aggregation.

9) Using the probabilities that the units are available for engagement, determine the
probability that unit i can be defeated, p defm(i). This can either be done directly or through a

Monte Carlo estimation technique.

10) As an alternative to step #9 above, we can generate a realization of an engagement list
by drawing against Dengage(i|w), Pengage(#7|w), and p,,,4(i). We can then allocate weapons
against this realized set and assess damages. As we are dealing with a single realization at this point.

this part of the analysis should be replicated.
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¢. Use to Generate Inpuls to a Theater Level Expected Value Model

If we are going to use the model to generate inputs representing the effects of a nuclear exchange

into a theater-level expected value model, we would implement the model as follows:

1) For all units, use the procedures contained in this paper to calculate measures of interest
such as pengage( 4 S| W), Pengage( 4,5 | W), Pengage( ¥, s| w), and pengage( 15,5 | w). This can either be

done directly or through a Monte Carlo estimation technique.

2) For all units, determine the probability that unit : can be defeated, pdefeat(i)' This can

either be done directly or through a Monte Carlo estimation technique.

3) Aggregate the probabilities that each target unit can be defeated into the probabilities
that each larger unit represented in the theater-level model (e.g., divisions) can be defeated, using
defeat criteria established in the study or analysis. This establishes the space of all possible outcomes

of the nuclear exchange (in terms of the binary defeat events).

4) Partition the space of all possible outcomes of the ruclear exchange into sets (strata) that

we expect to lead to significantly different outcomes at the theater level.

5) Select the modal outcome from each strata to determine which units should be acquired.

retained and be available for fire planning.

6) For each strata, generate a realization of an engagement set, such that the units available

for eng - -ment are defined by the modal outcome from the strata.

7) Allocate the available weapons against the engagement set of targets, using any preferred

allocation scheme (Appendix F).

8) Draw against the weapon delivery errors to determine the AGZs for the weapon. Assess
damages resulting from detonations occurring at those points. For each unit, the AGZ is constrained

to the defeat outcome determined in the selection from the strata.
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9) The results of the damage assessment represent the effects of the exchange against targeted
units that will be provided to the theater-level expected value model. This realization is used to

represent the effects of all possible outcomes within the strata from which it was selected.

10) Repeat steps 6 through 9 for each modal outcome from each strata.

Conclusions

The procedures outlined in this paper may be used in a variety of ways to analyze the effects of
possible theater nuclear engagements. Three advantages are realized from using these procedures:
First, the uncertainty surrounding the precise locations of the targeted units is explicitly accounted
for through multivariate probability distributions. Second, the proposed procedures form a model
that is significantly less complex than the detailed simulations currently used to perform theater
nuclear analysis, and these procedures may be applied incrementally to single units without having
to run an entire simulation. Third, it is possible to construct an experimental design to estimate the

variability in FORCEM oui puts.
These procedures will be implemented at CAA in a model called NEMESIS, which may be used

as a stand-alone model or may be used to prepare input to the agency’s theater-level combat model.

FORCEM.
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APPENDIX B
PROBABILITY DEFINITIONS

Probabililies related to target acquisstion and movement

pavail( ‘.) .
Let p,,.;:(?) be the probability that a target unit i 1s acquired and retained as a target until

detonation, and is stationary if required.

Puueit= P[ Yr > T4 — t, | acquired at time t, ] - P{ acquired at tp | - { p,q4, M

where / = 0 or 1 depending upon the requirement for the unit to be stationary at the time of

acquisition.

a. No Capability Exists to Observe the Target after Acquisition
Pavait = Pl Yr > T, —tp | on acquisition list at t, wnd stationary at A |
- P[ unit on the acquisition list at t, ] - P[ unit stationary at A ]

where A is the time the target was acquired

b. The Target is Observed Periodically after Acquisition
Paya = P[Yr > T —tp | on acquisition list at t, and stationary at T ]
- P[ unit on the acquisition list at tp | - P[ unit stationary at T, ]

where T, is the last time the target was observed prior to time tp

c. The Target is Observed Continuously after Acquisition with Preplanned Fire

Pavaii = P[Yr > T4 — &, | on acquisition list at tp ] - P{ unit on the acquisition list at t ]

d. The Target is Observed Continuously after Acquisition without Preplanned Fire

Pavait = 1 - pacq
Phit
We have the opportunity to hit a unit if it is available for fire and it is stationary at time T, at the

place where it was last observed.
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a. No Capability Exists to Observe the Target after Acquisition
Ppie = P[Yr > T, — tp | on acquisition hst at t, ] - P{ unit on the acquisition list at t, ) -

- P[Ys > Ty — A | stationary at A | - P[ unit stationary at A ] .

b. The Target is Observed Periodically after Acquisition
Py = P[Yr > Ty — tpand Yg > Ty — T, | on acquisition list at t, and stationary at T, ]

- P| unit on the acquisition list at t, ] - P[ unit stationary at T, ],

¢. The Target is Observed Continuously after Acquisition with Preplanned'Fire
Prir = P[Yr > T4 — tp | on acquisition list at tp | - P[ unit on the acquisition list at t, ]

- P[ Ys > T —tp| stationary at tp ] - P[ unit stationary at tp ].

d. The Target is Observed Continuously after Acquisition without Preplanned Fire
Prit = P[ Yr > T4y — T, | on acquisition list at T, ] - P[ unit on the acquisition list at T, ]
. { P[ Y,>7 | stationary at tp | + Py,
+ P[S > n|stopped at T; | - P[Ym < L—n | moving at t, | - pmove }

Probabilities related to location

Pprec( i w, a;, dgg; )

Let Pprec(i|w, a;, dgg; ) equal the probability that the unit will not be precluded from
engagement, given that it is available, can be engaged using weapon w, ind it is not suitable for
engagemen* as an aggregate target; i.e., D?j > (d;, + d; ¥ = d?jw or j was not available V j#..

However, when we approximate joint probabilities, we ignore the conditioning when evaluating
2 2
P{ r; DiPk > "we, ]. Thus

Pprec(t| w, a;,agg; ) = P[ unit 1 will not be precluded | available, weapon w, D?j > d?jw ]-

Pprec(*lw, a,,agg; ) = P[ r: D?Pk > rzWPIc U, ], bounded from above as:

Pprec(t|w. a;,a79;) = min{ P( D?pk > T%VPkU'. ) }221

Paggr( w | available )
Let G;,, =11if D?j < (d,-w+djw)2 = dfjw, given weapon w and both units i ; available.
= 0 otherwise.
Paggr( w | available ) = P( no aggregation with weapon w | all units available)
= min{ P[G,j, = 0] }Ty=y
B-2
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Paggr( 1| w, a;)
Let Paggr( i|w, a; ) be the probability that no unit can be aggregated with unit i, given that

weapon w is used and unit i is available. This can occur when D‘ > d2.  or when j is not available

ijw
for fire planning.
Paggr( il w, a; ) = P( no aggregation involving unit i | weapon w; i available )

= {U { (D, <d;,) N (Jjavailable) N ( ﬁD-P > rWPkUj )} }c | w, a; ]

=P[r1) (D; <dy,) N (java.ilable)r‘\(nD]Pk_rWPkUj)}C|w,ai]

.—'.-min{ [{(D <d. )r'\(ja.vailable)ﬂ(QDijZrWPkUj)}C|w,az-] m

lJ‘lU 1=1
JEX
= min{ | = P[( Dy < dy,) N () available ) N(QDp2twp ) v gl },
JFi
=1 - ma.x{ P[D; <dj, twa;] - P[javailable ] - P FkT DijZ Twp, Uj[w, a; ] }J’”:I
i
=1- Il-"‘x{ Paggr( ijlw, a;) Pwau(l’) : 5pre0(j|w- a;, @9,’ ) ;’;1
iFi
Paggr(ij| w, a;;
Let paggr(1j| w, a.) be the probability that units ¢ and j can be aggregated, given that weapon
w is used and units ! and ] are available.
Paggr( ij|w, a;;) = P[ D;] < (d;y, +4d;, ) | w; 4, j available | = P| Gijw=1]

Pager(ij|w, a;;
Let Daggr( ij| w, aij) be the probability that units ¢ and j cannot be aggregated, given that
weapon w is used and units ¢ and j are available.
Baggr( 7l w, a;;) = P[ D > (d;,, + d;,,)* | w i and j available ]
= P[G‘jw= 0] =1 — paggr(ij]w, a; )

Pno shist( 3|, a;, a7g;)

Let p,, ,,"-ﬁ( i| w, a;, agg;) be the probability that there is no shift in DGZ (due to preclusion)
for target i, given that weapon w is used, unit i is available, and there are no suitable aggregate
targets. By definition, if there is no DGZ shift due to preclusion, the unit ¢ is not precluded. As in
Pprec(i| w, a;,da7g; ), we condition on D?j > (d;, + djw )2 but ignore the conditioning when

evaluating the joint probabilities. Thus p,, ’,“-ﬁ( t|w,a;,a99;) = P[ no shift in DGZ for target 1 |
weapon w, t available, no aggregation | = P ? D?Plc > r";vpk ]

N 2 2 np
Pno shist{ 1l w0, 079, ) = m"‘{ P( DiPk > Twe, ] }l::l
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P,l..'ﬂ( i| w, a;, agyg;)
Let pshiﬂ( i|w, a;,dgg; ) be the probability that target unit i can be engaged as a single target
with a shift in DGZ due to preclusion, given that weapon w is used and unit ¢ is available. Again,

we condition on no suitable aggregate targets, D?j > (d;, +d;, )? but ignore the conditioning

tw
when evaluating the joint probabilities.
. — - 2 2 2 2 c
Ponipe( 1l a5, a99;) = P({ O Dip, > twp,u, } n { 0 Dip, > rWPk} )
2 2 2 2
=PlODip >rwpy ] — PO Dip >ryp, |

: — : . 2 2 np : 2 2 np
Ponifel 2] 1 0, aFg;) = mi {P{ Dip, > twe,u, ] }k:l - mm{ P[Dip, > rwp, ] }k:l

Note that p ;.. (i|w a;,499;) + P,, ship(ilw ¢;, aTg;)

= P[ r; D?Plc > rzWPIcUi] = ﬁprct:(ilwv a,’aa—gg;‘)

Porec( 37| w, 8,5, agg,;)

Let Pprec( 17| w, e aggij) equal the probability that both target units ¢ and j are not precluded
from engagement, given that both are available, both can be aggregated with each other, and they
can be jointly engaged using weapon w. In this case, we condition on D?j < (d;, +d;, =~ d?]- w'

Bprec( 4| w, a;;, 099, ) = Pfrl: { DQDP,: > r%VPkUi N D%Pk > I?WPI:U]‘ } D?j < d;-')jw !,
where D:'DPIC = the distance from the unshifted aggregate target (Xps7. Ypiz) to preclusion arez
k: that is, Dﬁ,,,k = (Xpgz = Xp, Y+ (Ypgz ~ Yp, )?. We approximate as

Borec( 7] w, a,-j,agg,-j) = min { { P{ DZDP,c > r%VPkU[ | D?j < d?]—w] }]1,:;7 }:ip where
2 2
I—P[ DDPk > rWPkUI]
2 2
P[Dj; < dj,]

gy w

P[Dgopk>r2WPkU1|Df <di =1~

5 <dj, for any 7 and for t=:0r ;.

Pao alu'ft( 17| w, 850 "99.',‘)

Let p,, shift iJ] w, a;, agg;; ) be the probability that there is no shift in DGZ (due to preclusion)
for the aggregate targev formed from units ¢ and j, given that weapon w is used. both units : and
are available, and they can be aggregated with each other.

Pro shipl ] W, 0,099;) =P[O Dhp > riyp | DY < df, ]

= mi 2 2 2 2 ne
= mm{ P{ DDPk > Twe, | D} < dijw] }k:l'
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p;};,‘ﬂ( ij| w, Qi “99.’,‘)

Let p’,“-ﬂ(ijlw) be the probability that there is a shift in DGZ due to preclusion for the
aggregate target formed from units i and j and the shifted DGZ is still within the maximum offset
distances d;,, and d;,, given that weapon w is used, both units i and j are available, and they can be

aggregated with each other.

P,hgﬂ(iﬂ W, 45y aggij) =
({ 0 Db, >we,u, In{n Db, >rivp, }on{p?<al, bn{ D <2, }1D% < d;Jw>.
Panie(7| Wy a5, agg;;) = [P[ A D?Pk>f2w1°kuij | D} < d%,) - P A D?Pk>f2w1’ | D} < di, ] :J

- P[D?ps < df, N D?), <df, | D} <di, ],

yw

| = 1.P[D?y <dj, nD?D,gdfw]
1]— l]w P[D2 <d2 ] ‘

yw

where P[ DY < dZ, nD]?D,ng? | D2

Note that p ,uﬂ(z][w, 8;,899:) + Pno shipl iJ| w, a;,a99;) < P[ n DDP > rWPkU ] =
Pprec( 17| w, a;;) due to the correction factor P{ D2D~’ < d N D?D" < dJ | D2 <d%. .

yw

Probabilities related to weapon allocation

prmmd( wl a5
Let p,,yna( w| a;;) be the probability that weapon type w can be allocated against unit i, given

that unit i is available.

Prownd( ¥ 8;
Let p una( @l a,;; ) be the probability that weapon type w can be allocated against the aggregate

target formed from units i and j, given that the aggregate target formed from i and j is available.

Probabilities -f engagement

Pengage( i, 3 | w)
Let Dengage( 1,3/ w) be the probability that unit i is available for engagement using weapon w
with a DGZ shift, given that weapon w is available to engage the target.
Pengage( &, 5| w) = P[ i engaged as a single target with DGZ shift | w]
= P[ i available] - P[{ ’;D‘-sz 'we, Ui} n{ QD"PE > "WPk}c | w]
P[ { U { (D, <d;;,, )N( j available )N( rkw D”,kz fwp, v, )} }C | w)

Pengagel( Ls|lw) = pamul( 1) - p,h,ﬂ(il w, aiaa?gi) * Paggr( 1| w, a, )
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Pengage( s w)
Let pPengage( 4 5, w) be the probability that unit z is available for engagement using weapon w

with a DGZ shift.

Pengage( 1,8, w) = Pa,,ail( ) - P,Iu‘ﬁ( ifw, ai,aig,-) * Paggr( i w, a; ) - Pro,m,i( w| a,)

Pengage( i, ¥ | @)
Let pengage( 4,5 | w) be the probability that unit i is available for engagement using weapon w
without a DGZ shift, given that weapon w is available to engage the target.
Pengage( 1,5 | w) = P[ i engaged as a single target with no DGZ shift | w]
{ i available ] - P[TD:Pk> Twe, fw]
P[{ U {(Dy<dy,) ﬂ(]avaxlable )N(QD;p,2 twp, 0 )} Jolw

Pengagc( 1S I w) = pava:l( i) - Pro _,}“ﬁ( ‘I w, a,, agg, ) pagy"( i w, a, )

Penguge( 1,3, w)
Let Pengage( 155, w) be the probability that unit : is available for engagement using weapon w«

without a DGZ shift.

Pengage( L3, w) = pavail( ) - Pao shiﬂ(il Wy ai,a_g'g'-) * Paggr( 1| w. g ) pra‘.nd( w| a.')

Pengage( 17, 8| )
Let pengage( 17,5|w) be the probability that the aggregate target formed from units : and j is
engaged as an aggregate target with a DGZ shift, given that weapon w is used.
Pengage( 1, 8] w) = P[ i engaged as an aggregate target with DGZ shift | w]
= P[ i available ] - P[ j available ]
[{nDDP 2twp, U, } n{ nDDPk> rwp }€ID;<dy, | w gy ]
P[{D2,<d }n{D2 +<d? }|D;< P[D;;<dyy, | w, a;)

="w » Wy i ="ijw

ij - x]w au

Pengage ij,s|w) = Pa,,au( 1) - P”au(]) ) shiﬂ (] w, ,‘jvaggi]’) * Paggr( ¥l w, ay; )

Pengagc( i, 3, w)

Let Pengage( i, 5, w) be the probability that the aggregate target formed from units : and j is
engaged as an aggregate target with a DGZ shift using weapon w.

Pengagc( 1,5 w) = Pa,,a,'l( 1) - Pam,’](j)

P,hgﬂ( iy | w, G5 agg!-j) * Paggr( ij | w, a; ) - Pround! w| a.‘j)

B-6




CAA-RP-89-3

Pengage( 5 | w)

Let Pengage( 17,5 {w) be the probability that the aggregate target formed from units 7 and j is
engaged as an aggregate target with no DGZ shift, given that weapon w is used.

Pengage( 4,5 | w) = P[ i engaged as an aggregate target with no DGZ shift | w]

= P[i available] - P[; available] - P[{ n DDPEZ fwp, N {D;<dyy, }lw g
- P[ D;<d;,fwa;]

p!ﬂﬂ‘lQC( ij’? I w) = pavail( i) ’ pavail(j) * Pao s/liﬁ( l]' w, aij’ aggij) : Pagyr( ']l w, aij )

= P[: available] - P[j available] - P{ rkw D, sz fwp, [Dy; Ldgjy wr g

Pengagc( 1,3, w)

Let Dengage( 4,5, w) be the probability that the aggregate target formed from units : and j is
engaged as an aggregate target with a DGZ shift using weapon w.

Pengage( ij’?’ w) = pavail( ') . pavail(j) ' pround( w| aij) * Pno shiﬁ( UI w, aij’ aggij)

* Paggr( 1| w, ai]’)
Probabilities of conditional defeat

Piefear(? | w2 8;, T, a79;)

Let pdcfut(i | w,a;, 5,459,) = P[ unit i defeated | weapon w; no DGZ shift; ¢ available: no
aggregation | be the probability that unit i can be defeated as a single target, given that weapon w is
used, there is no DGZ shift, and unit i is available for fire planning. If unit i is engaged as a single
target with no DGZ shift, then the DGZ is located at the perceived target center, with coordinates »

Xpez = X, and Ypgz; = Y. Using weapon w, unit i is defeated if (XAGZ_xi)2 +
(Y gz ~Y;)? <d},. Thus

Paefear(i | 0,5, 059;) = P[(Xyq7 = X; )P + (Y67 — Y, < d}, ]

pdefccg(i | w, a;, S a‘g‘g,-)

Let D yepeqi(? | w,a;, s agg;) = P[ unit i defeated | weapon w; DGZ shift: i available; no
aggregation] be the probability that unit ¢ can be defeated as a single target, given that weapon w is
used, there is a DGZ shift, and unit 1 is available for fire planning. If unit i is engaged as a single
target with a shifted DGZ, then the DGZ is located at the shifted coordinates X}, = 8 X;; +
(1-23) XP’c and Yhgoy = B Y, + (1-0) YPk. Using weapon w. unit i is defeated if
(X462 =X, + (Y4gz—Y,;)? < d?,. Thus

Pieyunev1 w2y 5 a09,) = PL{Xygz = X;)" + (Yigz - ¥;) < dj,
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Picfeat(V | w; 8;, 3, a99;)

Let pdefut(ij | w,a;, $.43g;) = P[ units : and j defeated as aggregate target | weapon w; no
DGZ shift; 1,j available ] be the probability that units 1 and j can be defeated as an aggregate target,
given that weapon w is used, there is no DGZ shift, and units : and j are available for fire planning.
If units : and j are engaged as an aggregate target with no DGZ shift, then the DGZ is located along
a line segment connecting the perceived target centers, with coordinates X0, = a X, + (i—a)
XJL and Ypoy, = o Y, + (l-o) Y]L . Using weapon w, unit : is defeated if
(Xyez = X ) + ( Yz = Y; )
(Yygz = Y,)? < df,. Thus

< d?, and unit j is defeated if ( X 5, — X, ) +

pdcfcat(ij l W, a,’v '_5- 47!1 )
=P {(X462=X)?+ (Y gz =Y’ <}, } 0 {(X462-X, P+ (Y 67-Y))<d}, }]

Picseat( ¥ | w1 055 5,099, )

Let Piefeat( ¥ | w,a;, sag9,) = P[ units 1 and j defeated as aggregate target | weapon w; DGZ
shift; 1.; available] be the probability that units : and j can be defeated as an aggregate target.
given that weapon w is used, there is a DGZ shift, and units : and j are available for fire planning. If
units : and j are engaged as an aggregate target with a DGZ shift due to preclusion, then the DGZ is
shifted from the point located along a line segment connecting the perceived target centers, with
shifted coordinates X%y = B8 Xpgz + (1-0) XPk and Yhoy = 0 Ypgz + (1-0) ka.
where the unshifted DGZ had coordinates Xpoy = a X; - ‘1-a) ij and Ypoy, = a Y, +
(1—a) Y- . Using weapon w, unit 1 is defeated if (X%, - ¥ ' + (Y457 —Y; )} < d:?’w and unit
J is defeated if ( X% g7 — X 12+ ( acz — Y, )2 < d?w. Thus

Piefear( 1| w855 5,079, )

= P{{(X%z2=X)?+(Yigz =Y ) Sdl,} N {(Xhgz—%; ) +(Yigz—Y,)’ <dj, } ]

Paeseat(1 | w,8;, 3, a99;5)

Let pyfoai(t | w,a;, 3,d79;) = P[ unit : defeated as aggregate target | weapon w; no DGZ shift:
1j available | be the probability that unit i can be defeated as an aggregate target, given that
weapon w is used, there is no DGZ shift, and units : and j are availahle fe- fire planning. If units :
and j are engaged as an aggregate target with no DGZ shift, then the DGZ is located along a line
segment connecting th~ perceived target centers, with coordinates X, ., and Y, oas gieu
previously. Using weapon w, unit 1 is defeated if (X 4 5, — X; )2+ (Yagz—Y; )? < dfw. Thus

Paefear(t ] w0, 3,099, ) = P[(X 457 =X +(Y 46, -Y)? < di,

B-8
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Pacfeas’t | W1 855 5, 899;;)

Let pdefeat(i | w,a;, s,aGg; ) = P[ unit i defeated as aggregate target | weapon w; DGZ shift; i,
available] be the probability that unit i can be defeated as an aggregate target, given that weapon w
is used, there is a DGZ shift, and units i and j are available for fire planning. If units ¢ and j are
engaged as an aggregate target with a DGZ shift due to preclusion, then the DGZ is shifted from the
point located along a line segment connecting the perceived target centers, with shifted coordinates
Xpez = 8 Xpgz + (1-8) ka and Yhgz = 8 Ypgz + (1-0) YPk, where the unshifted
DGZ had coordinates X5, and Y,y as given previously. Using weapon w, unit : is defeated if
(X%6z — X; ) + (Y4gz — Y;)? < d},. Thus

Pucseat( | W 850 5,050, ) = P[(Xygz =X’ +(Yiygz—Y))* < diy,

Probabilities of defeat

pdcfeaf(i l w)

Let pdefcat(il w) = P[ unit i defeated | weapon w ] be the probability that unit i is available
and can be defeated, given that weapon w is used. Thus we are averaging over the probability that
unit i is available, that it is engaged as a single or aggregate target, and that the DGZ is or is not

shifted.

Pdefeat( 1 )

= P[ unit i is defeated as a singie target | w] + P[ unit i is defeated as an aggregate target | v ]

= P[ D,,; < d;, | DGZ shift, i single target, w] - P[ DGZ shift, i single target | w ]

+ P[ D,; < d,, | no DGZ shift, i single target, w] - P[ no DGZ shift, ¢ single target | v ]

+ P[ Dy, < d;, | DGZ shift, ij aggregate target, w] - P[ DGZ shift, ij aggregate target | w)

+ P[ D,; < d;, | no DGZ shift, ij aggregate target, w] - P[ no DGZ shift, ij aggregate target | w |

Pdefwg(il w)
= Dyesea(i | 955 $,659;)  Poyait(1) - Ponigel il w,0;,a59;) - Paggr( il w, a;)
Paefeat(t ] W85 51899;) * Puygit( ) * Pao shipe( #| w85, 099;) - Paggr( ¢|w, a;)
T Pyesear( i | W 851 $8995) * Payait(9) * Payait(d) - Popip( 71w, 855, 899;5) - Paggr( 47w, a5 )

+ P,j.v-“‘/!' |, 350 R agyi]-') “Pauaitt V) * Pagaii' D) * Pro ,;,,ﬁ( gl w 355 ayy,-]-) * Paggr( 4, % a; )

+

pdefeat(il w)
= pdefm(il w, a;, $699;) * Dengage( 5w ) + pdefm(il W, &;, 5,439, ) - Pengage( 45 | w)
+ pdef“t(i | w, G5 5 aygij) * Pengage( W s|w) + pdcfeat(i | w, 85 s, aggij) * Pengage( 4,5 |w)
B-9
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pdefeat(i’ w)
Let pdcfcat(i’ w) = P[ unit i defeated using weapon w | be the probability that unit 1 is
available and can be defeated using weapon w. In this case, we remove the conditioning on weapon

w.

Pieeat{ b %)
= {Pdefeat(” Wy 8;, 5,699;) * Payait( D) - Popipg( 1l 0 8;,099;) - Paggr( il w, a; )
+ Pacsear(3 | 028, 5.699;) - Puyait(8) * P shipg( il s 05, 079;) - Pager( #| w, a;) }
* Prouna( @1 8;)
+ pdefeat(i | w, Bi5r S ‘199,'_,') * Pavait( ) * Paoait(D) P,h,ﬁ( 1| w aij,aggij) * Paggr( il w, a; )
+ pdefcat(” w, aij,fs", aggij) . Pavau( 8) - P,“,au(f) * Pao ,h,'ﬂ( i| w, @i 099,'_,') * Paggrl il w, a,‘j) }

: praund( w| 4; )

pdcfeat(i’ w)
= pdefeat(i | w, a;y S, agg;) * Pengage( 45, w ) + pdcfcat(i | w, a;,3,0d99;) - Dengage( 1,5, w )

+ Puefear(? | wag, s, 899;;) * Pengage( 15, W ) + Popoq(1 | wia;,,ag9;) - Pengage( 4,3, w )

pdefcat( i)
Let pdefmt(i) be the probability that unit i is defeated using tactical nuclear weapons.

pdef’at(i) = Y P[ Unit : defeated using weapon w ]
- w
pdefeat(i) = ; pdefeat(i’ w)

B-10
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APPENDIX C
MULTINORMAL DISTRIBUTIONS

Section . UPDATING THE MULTIVARIATE DISTRIBUTIONS FOR UNIT LOCATIONS*

The Multivariate Normal Distribution

We use the following notation to specify the m-dimensional multinormal probability density

function, or pdf:

(xlwmz) =[£] 771z

where g = ( fy, M9, ..., fim )’ is an m-dimensional known mean vector and Zisa ( m x m ) -

~l3

-
2

exp{—%(x—ﬂ)‘E—l(x—ﬂ)}, 0 < x < .

dimensional positive definite symmetric variance-covariance matrix. We define a matrix R = L
R is referred to as the precision matriz of the distribution. g is assumed known but R is assumed

unknown with a multivariate Wishart prior.
Multivariate Wishart Distribution

If Sy, ..., Sn are a random sample of m-dimensional random vectors with mean vector 0 and and

m x m variance/covariance matrix I 4, and V is defined such that

2. t
V=358,
=1
then the random matrix V has a Wishart distribution with n degrees of freedom and parametric
matriz L 4, where n > m — 1 and Iy is nonsingular. For any m x m matrix v which is symmetric

and positive definite, the pdf of v is:
n (n-m-1)
— 2 Z 1 —1
flvin Lqy) = clZ vl exp{ —5 tr(Z7 " v)},

where tr( £ ! v ) denotes the trace of the matrix £~ ! v and the constant c is equal to:

n_2k k(’:U i n4l—j) -
c=] 27 x ,I:I-IF( 5 ) L

* Material in this section has-been extracted from DeGroot [1970]
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Obtaining the Posterior Distribution

DeGroot[1970, pp. 176,177] provides the following result: Suppose that X, ..., X5 are a random
sample of m-dimensional random vectors with a specified mean vector m and and an unknown
value of the m x m precision matrixX R. Suppose also that the prior distribution of R iz a Wishart
distribution with o degrees of freedom and precision matrix 7 such that « > m—1 and 7 is a
symmetric positive definite matrix. Then the posterior distribution of R when X; = x; (1 = L, ...,
n ) is a Wishart distribution with a + n degrees of freedom and precision matrix r*, where

P=7r+ i ( x;—m )( x;—m )"

We can use this result to easily update the posterior distribution of the unknown precision
matrix R of our multinormal distribution for the X and Y coordinates of the actual unit locations.

given data X,, ..., X4 and Y}, ..., Y4 that represent n vectors of manual array locations.
Obtaining the Prior Distribution Without Data

If the initial (prior) distribution cannot be specified by an expert in arraying, then a
noninformative prior distribution can be used. In essence, a noninformative prior for the precision
matrix R is an improper Wishart distribution with o = 0 degrees of freedom and precision matrix
7 = 0. Therefore, given a random sample of data vectors x, ..., Xa, the posterior distribution of R

is a Wishart distribution with n—1 degrees of freedom and precision matrix r*, where

™= i (x;—m)( x;—m ).
i=
If R is distributed as Wishart with n degrees of freedom and precision matrix 7 (thus
variance/covariance matrix 7 '), then the expectation of R, E[ R | = n7 !, For our multinormal
distributions used in cur probability model for the actual unit locations, we use the multinormal pdf
given the known vector of unit mean locations u; and the estimated variance/covariance © =
e = 5

—-m 1
tx i w)=[ & |77 FlPexp{ =L (x—w) F(x—n) ), o <x<x

C-2
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Obtaining the Prior Distribution Witk Data

If the initial (prior) distribution can be specified by an expert in arraying, then a proper Wishart
distribution will be used. We assume the variables X to be distributed as multinormal ( ug. X ).
where p is known (the templated mean locations) and ¥ = E[ R™! ]. From the Wishart
distribution, we know that EfR] = (a+n) r— L Thus £ = E[R™!] = E[ {(a+n) 7* "1} 7]
= —L_ r. The updating formula given on the previous page will be used to obtain the posterior

a+n
Wishart distribution for R.

Section II. GENERATING MULTINORMAL PSEUDORANDOM VARIATES*

Procedure
Let X* = ( X, X5, ..., Xm ) be an m-dimensional vector of random variables with a joint pdf
] .
(x| E) =]k |75 T el =L (x=w) T7Mx - )}, %< x < x.

Then X can be represented as
X=CZ+ p, A
where C is a unique lower triangular matrix solving £ = C C*.
Let <, and o denote elements in the ith row and jth column of C and I respectively. Then

Algorithm LTM from Fishman is used to compute C.

Algorithm LTM

l.a = ,Id“

22Fori=1,..,m ¢;, = 3

Jbi=2

(1)

. If i = m, stop.

6. Otherwise, t = i + 1 j-1
7 = > <y Cii
7.Forj=2,.., 1—1, ¢ = 1C=’
7
8. Go to 4.

* Material in this section has been extracted from Fishman [1978] C-3
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Generating Mullinormal Pseudorandom Variates

To generate m-dimensional vectors x from a multinormal distribution, given u and I, algorithm

MN1 from Fishman is used. .

Algorithm MN1

1. For : = 1, ..., m, generate N{0,1) pseudorandom variates Z,.
201=1

:
3.X‘=pi+zcijz

=1 ’

4. If i = m, stop
5. Otherwise, : = 1 + 1

6. Goto 3

C-4
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APPENDIX D
DISTRIBUTIONS FOR QUADRATIC FORMS IN NORMAL VARIABLES

Johnson and Kotz [1972] discuss approximations to quadratic forms in normal variables. If we
define Fa( q; A, w ) = P[ Q( Z ) < q ] for given n, then we can establish approximations for

F.( q; A, 0 ) (the central case) and F,( q; A, w ) (the general case).

Notation
z"j A;(Z; — w))* where Z; ~ N( 0,1 ).
F(q,A.g— =P[Q(Z)<q]
n B ) ] l“t
D =D + Dy = 05 (Zyy + 720 )° + 03 ( 2y + 70 )

Zlnj ~ N(0,1) for k = z, ».
Ay = ”iij fork =z, y.
w, = ;:—:j for k = z, y.

For the perceived unit location ( X,;, Y, ).
#ﬁjg(ﬂ,g*‘l‘gﬂ—l‘rj‘l‘tﬂ)
o’ﬁ‘-j = ( o ; + "'m + a + a’m - 21’:;‘,":;";, ).
Byj= (Hy + By — #,,- - “tw‘ )

2 = 2, 2 —_9 . . .
oo = ( i + O + a 4 am 20,50 4i% 4 ).

The Central Case

If we consider the special case where all w = 0, and we order our A’s such that A, > A,. thon

we can find Fy( q; A, 0 ) using a result by Rubin (1960]:

Fa(a; A, 0) = P{x2(r?) < R*] ~ P[ \;*(R?) < r*] . where
»(;2( r? ) denotes a non-central chi-square random variable with 2 degrees of freedom and

non-centrality parameter r°,
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The Non-Central Case

If we consider the general case where not all w = 0, we use au approach was developed by

Rubin [1962]:

x, 2
Fa(lq X, p:) =3 ¢ Py 4, <

j=0

3 = any arbitrary constant; we suggest 3 = X

a
3 ] « where

2 Ashy
s T Ay

y y 1
w=[oe(-1g ) B ]
r—1
e, = T?l;' j;O G, —; e]-’ , and
B ir Y [Win: 5jlr—1
Gr = - = + r3 = 1 - & >1).
lc=.r:|: ’\k] k§: Ak Ak (rz1)

For 3, A; and w, defined as given above,

v Ty (= L[ Bmiy B
€o 5.2 XPlT T T,
U:ij+dyij ] ]
1 r=—1 .
ee” =5 Y G,_;e’ ,andfor r>1),
r = 77
2 2
_ 20k |r 20k Ar
Gr = 1 - ] 2 + 1 - 2 2
T2ii T Oy zii Ty
2 2 - 9 22
+ <70 55 9 gij r“m'j 2. 1= 0 lr—1
ol +ot. |o? ol +ol.
F21] ¥ A rij yi]
2 ¢2. a7 242
2”’:{,%:’; Hyiil iz 205 |r—
2 2 2 2 2 *
Oriit 0% |7y Ozii i

D-2
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To evaluate the central chi-square cdf, we recommend the Wilson-Hilferty [1931] approximation:

q
2 q . [_3 3 2 N =1 9(n+?.]) .
Plxagq; S 3= q’[ {(n+2j) —l+50n+2) } J’T 3;811

To evaluate, we determine as many of the terms of the sum as necessary; perhaps the first three

terms. The error of approximation is also found in Rubin [1962].

A Less Accurate but Simpler Approzimation

A simpler approximation can be derived if we are willing to accept less accuracy. It is known
that the limiting distribution of a standardized chi-square is N[ 0,1 ] . If we approximate the chi-
square variable with its limiting distribution, we can obtain the following for any non-central chi-
square Y} (w) (the central chi-square is a special case), where Z ~ N{(0,1) (Johnson & Kotz [1972. p

141] :

F(x;u.u):P[x}’/(w)Sx]=p[ZS X —V —w ]
[ e

2Av + 2w)]
2 1/2
Plxp(w) <x]=PlZ[2Av+2w)]'" " +v+w <x]
Recall that Di.’,‘ = ai,-j xf,(ui), where “’Z = % . Thus
kij

Di,‘j-"'-az,-j[:l[Q(u-}-Quz)]l/z+y+w'i :]

)]1/2

orD;;',-J- = a,f,-j[Q(V+2w: Z+(u+w§)o,f,-j,

2
iy

5
aki]

which is of the form aZ + b, a Normal distributed variable. Recalling that v = 1 and u'i =

. 2 2
Di.’j ~ N Uiij + /“Zij’ QUZ.‘;‘(UHJ‘ +2“Zij)] for k = z,y.

2 _n2 2,
Dij = Dn’j + Dyij’ therefore

2 . 2 2 2 2 2 (.2 2 2 2 2
D;; ~ N[: Toij + Hois + Ty ¥ Byiir ?.Uu-j(tfm-j +2uz;) + 203,005+ 20,5) ]
[t is easv to verify that the approximation is unbiased with respect to the first and second moments.

D-3




Let Y, Yo, ~ BVN( (pp,42), (63, 03), p ) and let X;, X, be defined as
Vv, -
X, =%

Fy,v,(yuy2) = P[Y) <y Ys <y ] —P[
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To evaluate,

P(D <d]_p(

2 2 2
( iy + B iy + inj + /‘yij)

ol
aru( ry +‘)"m) + ‘am( yis + O“yv)

Evaluating Bivariate Normal CDFs

If Xl, X2 -~ BVN( (010) (

p ) [standardized bivariate normal], then we define L( h.k,p )
L{( hkyp)=P[X;>h; X;>k]
It is easy to verify that

x{lxz(h k) =P[X;<h; X, <k]=P[X;>h] +P[X,>k] + P[X;>h: Xo>k] -1
Pearson [1901] (
to L( h,k,p ):

see also Johnson & Kotz [1972], p. 118 ) suggested the following approximation
L( hk,p ) = ®(h) &(k) + Z(h) Z(k)[p +5

2 03
ﬁhk + ﬁ(h—l)(k—l) + - ],
where Z(x) = L.

rx
Ee and Q(x)_—.JO

s,

Z(u) du.

X, = Yl—/-‘l.
——&?,-l—g. Then

7

m < y1 #1 Ywa—;#» < y'za—z#'z]
= P[X, < 878 x, < f20e)
= o[ Lyt ] + o B2 4 1 Bht, k)
From Pearson’s approximation, using the first two terms,
Fy,y,(Yoa) = 8(h) + 8(k) + 8(h) 8(k) + 2(h) 2(0) | p + Gk | = 1,
where h = Y1;‘1#1. k = )’2‘#2.

D-4
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MONTE CARLO EXPERIMENTS
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1. Generate an array of actual unit locations ( X;, Y; ) from the multinormal distribution.

2. Read in the preclusion area locations within the larger unit area.and convert terrain coordinates

to

local coordinates X Py Y P,

3. For each unit i = m,...,1 by —1

4. Generate TLE random variables TX;, TY;. Add to ( X;, Y; ) to get perceived unit locations
Xip Yir
5. For each preclusion area k£ = 1,...,np
6. Compute the distance from perceived unit i to preclusion area &, D, P,
7. For each weapon type w = 1,...,nw
[Determine if unit i is precluded from engagement with weapon w]
8. IfD,-Pk SrWPkUi
9. Set a binary variable BWPkU( Lw) =1 .
10. Exit to step 13 (next weapon w).
[If not precluded, determine if DGZ shifts due to preclusion. Find closest preclusion area]
11. Otherwise, if D‘Pk < rWPk and D”’k < DminPk’
12. Set a variable DminPk( i) = DiPk and an integer variable IWPk( ) =k
13. Loop on weapon w.
14.  Loop on preclusion area k.
15. Loop on unit .
16. For each unit i = m,...,1 by —1
17. For each weapon type w = 1,...,nw
18. If Bwpku(i,w) = 0, [Unit ¢ not precluded]
19. For each unit j = i+1,...,m,
20. If BWPkU(j,w) = 0, [Unit j not precluded]
21. Compute the distance from unit : to unit j, Dij = DJ.'..
[Determine if i and j can be aggregated. Find closest unit j to i]
22, IfD;; < (d;, +d;,)[ijcan be aggregated |

E-1
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Y
®© 2

30.

If Dij < Dmin agyr( i’w)’
Set a variable D_ . a”r( LWw) = D'.J.
Set an integer variable [,gr(1,w) =

IfD;; <D

Set a variable D

min aggr(j’w)

minaggr(j’w) = DiJ
Set an integer variable 444, (j,w) = 1

Loop on unit j.

Loop on weapon w.

31. Loop on unit ..

32. For each unit i = 1,...,m

33.
34.
35.
36.
37.
38.
39.

40.
41.

42,
43.

44,
45.
46.
47.

48.
49,
50.
51.

E-2

For each weapon type w = 1,.. ,nw
If BWP,:U( L, w) = 1 [preclusion],
Exit to step 88 (next weapon w).
If Ioggr(4,w) > m [already aggregated with a previously considered unit ]
Exit to step 88 (next weapon w).
If Iaggr(i,w) = 0,
Exit to step 74 below (single target).
[ Compute aggregated DGZ | .
Otherwise, [ Isggr( ti) ;30, 7 = laggr(t,w), and D‘.j = Dminaggr( Lw) ]

Calculate o = LD—ﬂ and compute X, (1,w) = Xpea(Jiw)

ij
= aX;; + (1-a) XL Ypgz(hw) = Ypgz()) = a ¥, + (1-a) Y.
For each preclusion area &,
Compute the distance from aggregate target ij ( at coordinates X p~(i,w),
Ypgz(w) ) to preclusion area £, DDPk'
[Check to see if aggregate DGZ is precluded]
UDpp, S twpuy
Set Iaggr( i,w) = 0 [preclusion rules out aggregate DGZ for weapon w]
Exit to step 74 below (single target).
Otherwi D >
erwise [D ) P, > Twp, Uiju
[ Check to see if aggregate DGZ must be shifted due to preclusion ]
fDpp, <twp, andDpp < Tppninp,
Set a temporary variable T, . P, = D, P,
Set an integer variable I, Pl:( ww) =k

Loop on preclusion area k.




53.
54.
55.
36.

57.

62.
63.

64.

65.
66.
67.

68.
69.
70.
71
72.
73.
74.
75.
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IfI, WPI;( i,w) = 0, [ No shift in DGZ due to preclusion ]
Set a binary variable Bn“,u-ﬂ a“r( ww) = Bo, it ager(Bw) =1
Set Ioggr(Jiw) = m + 4.
Exit to step 88 (next weapon w).
Otherwise [ I, 1 Pk( i,w) # 0, aggregate target, no preclusion, DGZ shift,

where j = Lyger(i,w), k = I, WPk(i,w), and DDP,: = TDminPk 1
r

wpP
Calculate 8 = Fl;?" and compute new X o (i,w) = Xpao(j,w) =
k

B Xpgz(sw) + (1-5) XPk, new Ypoz(tw) = Ypas(sw) =
B Ypgz(iw) + (1-8) ka-
[ Check to see if shifted DGZ still covers both targets ]
Compute the distance from shifted aggregate target ij DGZ ( at coordinates
Xpgz(iw), Ypgz(i,w) ) to target 3, DiD" and target j, DjD"
If DiD" >d, or DjD’ > djw
Set Iaggr( i,w) = 0 ( shift required by preclusion rules out aggregate DGZ)
Reset X pgz(1w), Xpgz(siw) to X, p, X, p
and Ypio(iw), Ypgz(sw) to Y, p, Y,
Exit to step 74 below (single target).
Else for all preclusion areas &,
[ Check to see if shifted DGZ is ruled out due to preclusion ]
Compute the distance from shifted aggregate target ij DGZ ( at coordinates
Xpgz(iw), Ypez(iw) ) to preclusion area &, DD’ X
If DD‘ P, < rWPk S
Set Laggr(i,w) = 0 ( preclusion rules out aggregate DGZ)
Reset X piz(4w), Xpgz(sw) to X, p, X,
and Ypgo(ihw), Ypgz(iw)to Y, f, Y,
Exit to step 74 below (single target).
Loop on preclusion area k.
Set a binary variable B,uin aur( L) = B,,“-ﬂ a“r(j,w) = 1.
Set Ig0r(jiw) = m + i
End IF [ aggregate target, no preclusion, DGZ shift ]
Exit to step 88 ( next weapon w)
[ Single target, no preciusion, I4g4r( f,w) = 0, BWPkU( Lw)=0]
Set a binary variable By aggr( i,w) = 1 [ Unit i not aggregated ]
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76. IfIWPk( Lww) = 0,

77. Set a binary variable B m-ﬂ( Lhw) =1

78. Exit to step 88 ( next weapon w)

79. Else | IWP,‘( i,w) # 0, single target, no preclusion, DGZ shift, where ¥ = I, WPk( 1) ]

80. Calculate 3 = D—";%T) and compute Xpoo(hw) = 8 X, + (1-3) ka‘
Ypgz(iw) = BY;p + (1= Yp .

81. For all preclusion areas k,

82. Compute the distance from shifted target : DGZ ( at coordinates X ;- ( 1,w),

Y pgz(tw) ) to preclusion area £, D, Py
[ Check to see if shifted DGZ violates any other preclusion area restrictions |
83. IfD, P, < rWPkU‘.’ |
85. Exit to step 88 (next weapon w)
86. Otherwise, set a binary variable B ,,"-ﬂ( tw) = L.

87. Loop on preclusion area k.

If desired, the probability of defeating each unit i given weapon w can be estimated here
Generate CEP random variables CX;, CY;. Add to Xp,,(4w) and Y ps,(4,w) respectively to
Compute D% o (iw) = ( X4az(iw) — X; )2 + (Y gz(0w) — Y, )2
(1) If B, pip(hw) =1 (single target, no preclusion, no DGZ shift)
Set Bdefent no ahiﬂ( hw) =1
(2) Else if B,Mﬂ( i,w) = 1 (single target, no preclusion, DGZ shift)
If D% . (iw) < &2,
Set Byefeat shipt(hw) =1
(3) Else if B
For j = laggr( 4, w), compute D} 7(5w) = (X 62(5w)=X;)? + (Y 5z05w)=Y;)".
If D? o7 (iw) < d2,

no shift aggr( bw) = 1 (aggregate target, no preclusion, no DGZ shift)

Set Bdejeat no shift a”r( hw)=1
If D} gz (jw) < d3,

Set Bde[eat no shift aggr(j' w) =1




(4)

88.
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Else if B,z aggr( i,w) = 1 (aggregate target, no preclusion, DGZ shift)
For j = Lager( i, w), compute D 57(jiw) = (X 4570w} —X;)? + (Y 52(5w)-Y,)"
If D3 ;5 (iw) < d?,
Set Byefeat shift aggr(h W) =1
If D} gz (i) < dF,

Set Byeeat shift aggr(d @) =1

Loop.on all weapons w.

89. Loop on all units 1.

Repeat N times. Then calculate the following estimators:

a. Bprec( ifw, a;, agg; ) =1 - T}/Z BWPkU( Lw)

b. Py shipe( il ws 655 630, ) - Paggr( ilwy ;) = WI/Z B,, ip(bw)

¢ Popipg( il ws a;, 679, ) - Pager( ilw, a; ) = 1—{,2 B i hw)

d. Baggr( i|w, 8; ) * Pprec( i| w, a;, agg; ) = 7%,2 Bro aggr( f,w)

e Dengage( 63 |W) = Doy nip( il 0, 65 670, ) - Pager( il w, a;) = 7{}2 Boo shine( W)
f. Pengage( 3 s|w) = P,;..'ﬂ( tlw, a;, 439; ) * Paggr( i{w, a; ) = 7—%, > Bs,u.ﬁ( ,w)

& Pno shiptl Ul W, 855, 6995 ) * Pager( lw, 0 ) = -1%72 B.o shift aggr( Ht)

h. pahiﬂ( 7] w, 4,5 899, ) * Paggr( 1] w, a;; ) = Tlf )y Bshiﬂaygr( iWw)

i. Pengage( 5,3 | W) = Pyypnipe( Wl a5, 899, ) - Pager( ij|w, a;) = 1—}, 2 Boy shift aggr( BW)
j- Pengage( #,8jw) = P,h.'ﬂ( ij | w, a;, a99;; ) * Paggr( ij| w, a4 ) = '1%/ Z B,;.,'ﬂ ,,ggr( Lw)
K Dgefent( 55,650, | 9,6;) =3 T Buegear no sripe(is ®)

L Paeseat( 49, 079; | w,0;) = T{r 2 Buefeat ship(h w)

M. Pefear( 431899, | wa;) = T%/ 2L Buiefeat no shift ager( @)

D Pyegear( 5, 0995 | wya;) = 7%r L Bicseat shift aggr(t @)

O Pdeseat($15:8995 | 0.05) = F T Buofeat no shift aggr(ds ©)

‘ _1 : .
p- pdc!e“(J' 4 a‘qgij | W, aij) - TV Z Bde]cat shift a.ggr( 4 w)
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NOTE: Pyofeqe(i | W) = Pyyair(?) - { Piefeat( 452699, | @, 8;) + Pyosoqe( 8679, | wya;)
+ { Pdefeat(i,?,aggij | w, “ij) + pdcfcat(i’ 8, agg;; | w, a;) } * Pavait(d) }
Paefeat(i | w) = 7%/2 Pavait( 1) *  Bieseat no shipt( i @) + Biosear spipe(% @)
+ { B efeat no shift ager{® W) + Buieear shift aggr(h @) } * Pavait(7) }
If units 4,7 are assumed to be available, then
Pacfeat il wr35) = § T { Bieeat no shift( 4 @) + Baegear spin( & @)

+ Bdefeat no shift aggr( 1, w) + Bdefcat shift aggr( 1 w) }

E-6
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APPENDIX F

GENERATING REALIZATIONS
Generating Multinormal Pseudorandom Variables

In order to generate unit locations, DGZs, AGZs, etc., it may be necessary to generate
pseudorandom variables (realizations of the random variables) from an m-dimensional multinormal

probability density function:

-

(x| m 2) =| & ]_% Iz

where p = ( py, pay .- Bm )T is an m-dimensional known mean vector and Xisa { m x m ) -

[y 1

exp{—%(x-—p)Tz_l(x-p)}, x < x < X.

dimensional positive definite symmetric variance-covariance matrix. We define a matrix R = 7!,
R is referred to as the precision matriz of the distribution. p is assumed known but R is assumed
unknown with a multivariate Wishart prior. To generate realizations from this distribution, we
assume that the matrix R is given, using a point estimate (the mean) from the current Wishart
prior distribution.

The following method is given in Scheuer and Stollar {1962] and summarized in Law and Kelton
[1982, pg. 269]. Since T is a positive definite symmetric matrix, it can be factored uniquely as £ =
CCT, where the ( m x m ) matrix C is lower triangular. Let c,; denote the ( 4, j )th element of C.

The algorithm for generating X;, X,, ..., Xm as given in Appendix A is:

1. Generate Z,, Z,, ..., Zm as iid N( 0,1 ) random variables.

m
2.Fori=1,..,mlet X; = pg; + > c;i ;e
i=1
Thus each X; is a linear combination of the Z,’s. The Y,’s can be generated using the same

algorithm with different c;'s
Generating Nuclear Laydown Realizations for FORCEM

The objective of this section is to specify a means for generating a nuclear laydown realization
for input to FORCEM, given the defeated / not defeated status of each FORCEM unit from the

experimental design. Several criteria will be followed:
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1. Each division (FORCEM unit) will have at least the required number of potential target
units defeated that are required to defeat the division ( n, . , efeat ).

2. The units will be ranked in order of target priority. This permits the weapon allocation to
be directed against the units of highest priority.

3. For each FORCEM division that must be defeated, the first n ; units in order of

min defea
decreasing pdc!m(i) will have an p,, .., = 1; in other words, they will assumed to be acquired.
retained, and available for fire planning. They will also have perfect weapons reliability (no failures)
and AGZs will be generated randomly for each available weapon in order of weapon preference. The
firsi weapon that yields an AGZ with the target coverage to defeat the unit will be selected for firing
against that unit. The remaining units will be available randomly according to p,,,,; for each unit.
weapons may fail randomly, and AGZs are not forced to cover the target. This insures that at least
Dyin defeat 3T€ available for fire, and those units which are to be struck are those most likely to be
defeated.

4. For each FORCEM division that must not be defeated, the first (m—n (+1) units

min defea
in order of increasing p defe «¢(1) will have an p_, .., = 0; in other words, they will assumed to be not
acquired or otherwise unavailable for fire planning. This insures that at least (m—n_ ;. defeat T1) are
never engaged, so the division cannot be defeated. The remaining units will be available randomly
according to p,,,; for each unit, weapons may fail randomly, and AGZs are not forced to cover the

target.

In order to keep the algorithm manageable, the generation of a FORCEM realization will most
likely have to be done in parts, probably Blue corps sectors for Blue against Red and Red army
sectors for Red against Blue. Within each sector, perform the following algorithm:

ALGORITHM:
For each division (FORCEM unit) j =1 to ng;,... . to be defeated in order of division target
priority
Generate actual and perceived locations for all potential target units
Order the unit p,,;,,,( ) values in decreasing order. Set p, .. defeat = the Do yoreqeth
probability in order

Order the units by decreasing target priority

(1]  Let Nyppoe =0
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For each unit in division j, i = 1 to m; in order

If pdefeat( l.) < Pmin defeat®
Draw U ~ Uniform( 0,1 )

IfU > p,,qi 80 to next i
Else for each weapon w = 1 to nw in order by target preference for unit i
If weapon w is not available within range, go to next w
Else determine the DGZ for unit ¢ with weapon w based on preclusion and
aggregation
If DGZ precluded, go to next w
Else if Pyopeqe( 1) < Prmin defeat?
Mark weapon w as expended
Draw U ~ Uniform( 0,1 )
If U > weapon system reliability, go to next i (a dud was fired)
Else generate and store AGZ for unit i using w (successful detonation)
If AGZ to actual location distance < d;,, let Niefeat = Niefear + 1
Exit loop on w
Else ( Puesear( i) 2 Prmin defeat )
Generate an AGZ for weapon w
If AGZ to actual location distance > d;,, go to next w (try again)
Else store AGZ for unit :
Let Nyfeat = Niefear + 1
Mark weapon w as expended
Exit loop on w (go to next 1)
End loop on w
End loop on i
if Ndefeat < Npin defeat’ %t Prin defeat = the (2 - n;, dcfeat)t’h probability in order,
destroy all AGZs, restore weapons expended and go to [1]
End loop on j

For each division (FORCEM unit) j =1 to n;, ;.. .. not to be defeated, in order of division target
priority
Generate actual and perceived locations for all potential target units
Order the unit py,;,,( 1) values in increasing order. Set p_;. defeat = the
(M=0,0 defear +1th probability in order
Order the units by decreasing target priority
F-3
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For each unit in division j, ¢ = 1 to m; in order
I Pyefearl 1) < Ppin defeats 80 t0 next i (unit not available for engagement)
Else draw U ~ Uniform( 0,1 )

If U > p,,. €0 to next i (unit not available for engagement)

Else for each weapon w = 1 to nw in order by target preference for unit :
If weapon w is not available within range, go to next w
Else determine the DGZ for unit i with weapon w based on preclusion and

aggregation

If DGZ precluded, go to next w
Mark weapon w as expended
Draw U ~ Uniform( 0,1 )
If U > weapon system reliability, go to next i (a dud was fired)
Else generate and store an AGZ for weapon w and unit i (successful detonation)

End loop on w

End loop on i
End loop on j
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APPENDIX G
EXAMPLE OF AN ANALYTIC SOLUTION

Section I - UPDATING THE MULTINORMAL DISTRIBUTION

Suppose that there is a simple template that consists of only two units, #1 and #2. Both units
are mechanized infantry units consisting of personnel in APCs, with a target unit radius of 500 m.
The template has unit #1 located at coordinates ( 0, 0 ) and unit #2 located at coordinates ( 0.
1100 ). When the template is placed on a map and oriented correctly, there are two nearby
preclusion areas whose local ( X, Y ) coordinates translate into ( 1000, 1000 ) for preclusion area #1
and ( 500, 1600 ) for preclusion area #?2.

There is no prior information available on the variance-covariance matrix ¥ for this templated
force, so a non-informative prior will be used to update X.

Four experiments are run where the units are arrayed using the NUFAM-GAP system. The

following data are obtained:

] x,=~145  y,=-—275 |
t. #1:
xpt. # X, =1770 ¥,=840
E 2 xl=1080 y1=—85
Xpt. :
pt. # X, =3020 y2=1035
_
E £3 r x; =—1640 y; =40
Xpt. :
P xp=—1850  y,=1305
] x, =3480 y, =275 |
t. #4:
xpt. # X, =555 v,=1315
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Updating the X-dimension Variance-Covariance Matriz ¥ ;.

The precision matrix Rz of the multinormal distribution for X,, X, has a prior Wishart

1

distribution ( a, 7z~ ) where T, is the precision inatrix of the Wishart distribution. The

noninformative values of a and 7, are:

From Appendix C, we know that the posterior distribution of R; is distributed as Wishart

n
(a+n, 72" " )ywhere rz* = 70 + Y (x; —mz) (x; —m; )"
=1

We begin by evaluating (x, — m ), recalling that m, = ( 0, 0 )*. Thus n = 4 and denoting
— X — Mz
x,v — My = x2i —mz‘g

_ [-175 _ _ [—1640 _ [3480
Xp—me = [1770] Xp =Mz = [3020] X3 —me = [—1850] Xy T Mz = [307}

n n
0 0 Z(xh—mrl)z Z(xh_mzl)(xh—mr))
1= =]
= +
0 0 n n
Zl(xh m,; )Xy —mgy) El(xh m,,)”
1= 1=
. 0 0 15,987,425 7,970,350 15,987,425 7,970,350
T = + =
z 0 0 7,970,350 15,983,825 7970,350 15,983,825

For the analytic model, we assume the variables X,, X, to be distributed as multinormal ( . £ ;)

where p. is known (the templated mean locations) and £, = E[ Ry ™' ]. From the Wishart
distribution, we know that E[ Ry | = (a+n) 7,*7' Thus £, = E[ R;7' | =
El{(a+n) 72" 7'} 71 ] = g r®.
5. — 1 15,987,425 7,970,350 _ 3,996,856 1,992,588
r ==

4 7,970,250 15,983,825 | 1,992,538 3,995,956
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Thus ¢2, = Var[ X, ] = 3,996.856; 02, = Var[ X, ] = 3,995,956 and

012 = Cov[ Xy, Xy ] =1.992,588, with g, = 5 = 0.499 = 0.5.
For convenience, we round off as follows:

o, = 1,999 = 2,000; 0., = 1,999 = 2,000 and

0,2 = 0.499(1,999)(1,999) = 0.5(2,000)(2,000).
Updating the Y-dimension Variance-Covariance Matriz L 4

The precision matrix Ry of the multinormal distribution for Y,, Y, has a prior Wishart

distribution ( a, ry—’ ) where 7y is the precision matrix of the Wishart distribution. The

noninformative values of o and 5 are:

0 0 |
a=10 Ty = .
z 0 0 J
From Appendix C, we know that the posterior distribution of Ry is distributed as Wishart

n
(a+n, ry* ") where Ty = 7y + ZI(}’;"my) (yi—my)"
1=

We begin by evaluating (y; — my), recalling that my = ( 0, 1100 ). Thus » = 4 and

—927 - 4 27¢
y, —my = [—363] yp = my = [_22] Yo =My = [2005] Y4 =My = H:ﬂ

n
Tyt =Ty + ZI(Yi"my) (yi—my)!
1=

n 2 L]
'Z_:I()’n‘—myz) _I(y“—mw)()’g,-—myz)

il
+

é(yu"mgl)(yzi—myﬁ’) il(yzi—my?)2

160,075 144,350

Ty :
144,350 160,075

For the analytic model, we assume the variables Y,, Y, to be distributed as multinormal ( uy, Zy)

where py is known (the templated mean locations) and £y = E[ R.y—l ] = E[ {(a+n)
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160,075 144,350 40,019 36,088
T4 144,350 160,075 | | 36,088 40,019

)
L3
!
[y
|

Thus o';';, = Var[ Y, ] = 40,019 = 052 = Var[ Y, |
= . _ 9y12 .
a,12 = Cov[ Yy, Y, | =36,088, with p,,, = ,-,—WL,,;; = 0.902 = 0.9.
For convenience, we round off as follows:
oy = 200.0 = 200; o, = 200.0 = 200 and

a,12 = 0.902(200.0)(200.0) = 0.9(200)(200).
Section 11 - SINGLE UNIT , SINGLE PRECLUSION AREA
Given information

Suppose we have a unit with the following characteristics:
Radius: 500 m.
Target elements: Personnel in APCs, Transmission Factor (TF) = 0.7
Mean location ( pz, ty ) = (0,0)
Location variance: o2, = 2000% m?; ai ; = 200% m?

P,yeit(1) = 1.0 (for convenience, we assume that it is available)

Target location error (TLE): g4,y = pyy; = 05 o2, =752 m?, afyl = 100° m?

We also have the following weapon characteristics:

Weapon 1: Yield: 1 kt CEP: 150m

Weapon 2: Yield: 10 kt CEP: 100m
From the CEP, we can compute the distribution of the shift due to weapon accuracy:
Weapon type 1: p .y = pioy =050y =0, = 1—%@ =225 m

Weapon type 2: pi oz = oy =050y =0y = % = 150 m

L=

We also have a required target coverage (target defeat criterion) of 30% coverage with IT radiation
effects against personnel (3000 rad).

There is a preclusion area (#1) with a radius of 1000 m. located at coordinates ( Xp sz) =
( 1000, 1000 ).

The preclusion area requirement is assumed for this example to avoid an exposure of more than 73

rad to exposed individuals, with a safety buffer of twice the weapon CEP.
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. Computing the necessary constants

From the above information, we can compute the required constants:

rr, = 500 m (given)
Using the following (unclassified) formulas for converting dose to l..tance, we can find the ry,
ranges.

3000 rad inside dose (0.7 TF) = 300 = 4286 outside dose
For a 1 kt yield, '

= exp{ 14 e—86x 10°R }, where D = (outside) dose in rad and R is the range in meters.

From this, a 4286 rad dose is achieved at 600 m and a 75 rad dose at 1370 m.
For a 10 kt yield,

D = exp{ 16.4 e—6-8x 10* R }, where D = (outside) dose in rad and R is the range in meters.
From this, a 4286 rad dose is achieved at 990 m and a 75 rad dose at 1960 m.
This yields tw, = 600 m. and Tw, = 990 m.
For preclusion, rwl(preclusion) = rwl(75 rad) + 2(CEP;) = 1370 + 2(150) = 1670;

rwz(preclusion) = rW2(75 rad) + 2(CEP,) = 1960 + 2(100) = 2160.
Thus the Twp, values are: Tw,p, = 1670 + 1000 = 2670 m; Tw,p, = 2160 + 1000 = 3160 m.
30% of a 500 m radius target area is covered by a 1 kt weapon ( tw, = 600 m ) at a distance of 925
m. 30% of a 500 m radius target area is covered by a 10 kt weapon ( tw, = 990 m ) at a distance
of 1355 m. Thusd, w, = 925 mandd, w, = 1355 m.

From the r, (preclusion), rPI and d,y values, we can compute Twe, and rWP1U1 for bhoth
weapons.

twop, = 1670 + 1000 = 2670 m; T'w,p, = 2160 + 1000 = 3160 m.

'wop,u, = 2670 — 925 = 1745 m; rw2PIUI = 3160 — 1355 = 1805 m.

Computing the disiributions from target unit #1 to preclusion area #1

We can compute the parameters of the important distributions from the target and preclusion area

information.
Brip, = (B + Bz ) = (Xp + fyzp ) = (0 +0) — (11000 +0) = —1,000
Byip, = ( By + Bgt) = (Yp, + By, ) = (0 +0) = (1000 +0) = —1,000

0l = (05 + o)+ ( ai,l + 0%p, ) = (2000 + 757 ) + (0 +0) = 4,005,625
0y1p, = (05 + 0l ) + (0h + fy, ) = (2007 +100%) + (0 +0) = 50,000
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Let “1P1§“;1P1+#;1P1+d;191+6;11’1and
2 _ 2 2 2 2 2 2
Ulpl = 20:Ip1(azlpl+2/"zlp1) + 2ay1p1(ay1p1+2/“ylp])
Then
2 . 2 2 . 13
D?,,~Nl#1,,07,,] or D, ~N[ 6,055,625 4.832 x 10°° ].
Bip, = 6,055,625

o,, = 6,951,084
1

p

Computing the probabilities of preclusion and shift (unit #1 from preclusion area #1)

- rr,2 2 26702 _ /“lp]
= 0.439 ,
_ \ \ 3160° — p,.
Pro shiﬁ(]!U’?’ a; agg;) = P[D“’J > rW2P1] =P[Z> __Tl-p—l—] =P[Z > 0.565 ]
= 0.286 R
o 1745‘ - #Ip
Pprec(1]wy, 2, 28g; ) = P[ D?pl > IWIPIUI} =P[Z> °——a'_17'1_—l] =P[Z > —0.433]
= 0.668
_ _ \ , 1805% — Biy,
= 0.656

Since ps,u-ﬂ(llw, ay, a8, ) = Pprec(l|w, a), agg; ) — p,, 3hiﬂ(1fw, a;, agg; ),
Pasip( 11wy, 2y, aBg, ) = 0.668 — 0.439 = 0.229
p,hiﬁ( 1{wy, a,;, agg; ) = 0.656 — 0.286 = 0.370

Computing the AGZ and conditional defeat distributions

Let AGZ, denote the AGZ from firing the weapon of type 1 and AGZ, denote the AGZ from
firing the weapon of type 2.

(1) No DGZ shift, Weapon type 1:

Xagz, = Xy + TX, + CX;i Y,gz =Y, + TY, + CY,. Thus
Xagz, = X; = TX, + CX;5 Y57 = Y, = TY, + CY,.

Let Hz14G2, = E[XAGZI_XI] = Bl * Bei Byracz, F E[YAGZI'—YI] = Beyy + Beyre
"ilAGZI = Var[XAGZI—X,] = ‘7:2;1 + afﬂ; "':MGZ[ = Var[YAGZI—Y,] = o-,zﬂ + ngl'
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P 2 2 2
Bracz, = P:1462, Y Hy1462, % 921462, % Ty1462,
2 _ 2 2 2 2 2 2
01462, = 2921462921462, 2#21462) + 293146251462, 24y 1 462)

Then the squared distance between the AGZ for weapon of type w and the unit 1, Df AGZy is:

2 —_ N2 2 . 2
D} acz, = Dz146z, + Dy1a6z,“Nl#1 462,71 462,

Evaluating the terms,
Bzracz, = 0; Byraez, = 0
02, 46z, = 15" + 225 = 56,250; 0 4z, = 1007 + 2257 = 60,625.
Bracz,= 0+ 0 + 56,250 + 60,625 = 116,875
0] acz, = 2(56,250)* + 2(60,625)* = 13,678,906,250
914Gz, = 116,957

The conditional probability of defeat given weapon type 1 and no DGZ shift is:

925% — Bra62z
Piefeat(llwp a5, 388, ) = P[ D?AGZI < d} w1 =PlZ< 11 =P[Z<632)

= 1.0

91462,

(2) No DGZ shift, Weapon type 2:

The squared distance between the AGZ for weapon of type #2 and the unit 1, Df AGZy is evaluated

as before.

br1acz, = 0iby146z2, =0

03146z, = 15 + 1507 = 28,125 0}, 457, = 100° + 1507 = 32,500
B1aGz,= 60,625

o3 4Gz, = 3,694,531,250

71462, = 60,783

The conditional probability of defeat given weapon type 1 and no DGZ shift is:

2
13557 — 4, 462,
%1462,

]

Paefeat( 11wz a3, a8g; ) = P[ D?AGZ; < df w,] =P[Z<
= P(Z < 20.200] = 1.0

G-7




CAA-RP-89-3
(3) DGZ shift, Weapon type 1:

Recall that twop, = 2670 and E[ D3 Pz] = 6,055,625. Thus
- _Wr
E[ D}, ]
The shifted DGZ coordinates are:
XAGz; =BX;p +(1=8)xp =8 (X,+TX;) + (1-3) xp
Yygzy =B Yo+ (1=8)yp =B (Y +TY;) + (1-8)yp,

B, = 1.085

Thus
Xagze = X1 = (F=1)X; + FTX; + (1=8) xp + CX, and
Yygzr = Yr=(8-1)Y; + BTY, + (1=8)yp + CY,.

Let pzlAGZj = E[XAGZ?—XI] = (ﬂ—l)l‘;l + ﬂl‘tu +(1-8) XPI+ T
Byraczy = EBY goz= Y1l = (B=Dnys + By + (1=8) yp + ey
UiIAGZ‘} Va’[xAcz;“xll = (B=1)o3, + Boiyy + 0l

5

2 — — 2 2 2
714628 = Va'[YAgz;‘YJ] = (B-1)oy; + Boyy + 04y
— .2 2 2 2
Pragzs=Peiaczyt Pyiaczy ¥ Pc1a62t Oy 1 a2
2 = o2 2 9,2 2 2 9,2
714625 = 2901462507 1 4625 Mo 14620 275146257y 1462 20y L aG )
Then the squared distance between the AGZ (based on a shifted DGZ) for weapcu of type #1 and
. 2 e
the unit 1, DIAGZ‘}’ is: _
2 N2 2 “ 2
Diaczy = Pzraczt + Dy1acz N["JAGZ‘;"’zAGz;]

Evaluating the terms,

Beiaczy = 0-085(0) + 1.085(0) — 0.085(1000) + 0 = ~85 = 4, , ;7
73146z = 0-085(2000%) + 1.085(757) + 225% = 396,749
751 agze = 0-085(200%) + 1.085(100%) + 2257 = 64,875

B, agze = 2—85)% + 396,749 + 64,875 = 76,075
1
& AGZ, = 2(396,749)(396,749+(2)(—85)%) + 2(64,875)(64,875+(2)(-85)°) = 336,578,874,208

The conditional proBability of defeat given weapon type 1 and a DGZ shift is:

9252 — u .
_ 1AGZ
pdcfeat( 1 l wl' al,s, aggl) = P[ D?AGZ; $d21 W] ] = P[ Y/ S _m-Z"—_l ] = P[ Z s 0.654 ]
1
= 0.744
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(4) DGZ shift, Weapon type 2:

Recall that ryy p = 3160 and E[ D? p)] = 6,055,625. Thus
_ WP

= - = 1.284
JEIDI,)

B2

The squared distance between the AGZ (based on a shifted DGZ) for weapon. of type 2 and the unit
1, D? AGZy is evaluated as before:
2 — N2 2 - 2
D} aczy = Dzraczy + Pyraczy Nk 462571 a6z
Evaluating the terms,

= — 0.284(1000) = —284 = p

Hrra62y = y14G7,
031 4Gz, = 0-284(20007) + 1.284(75%) + 150° = 1,160,227
751 aczy = 0.284(2007) + 1.284(100%) + 1507 = 46,706

= 1,374,388
#;AGZ‘E 12
o = 3.116 x 10

1AGZY

The conditional probability of defeat given weapon type 2 and a DGZ shift is:

13552 —
Puefear( 11 wpr01,8,388;) = P[ DfAGZ;Sdﬁ w,] = P[Z < VT 2] = P[Z2<0.262]
2
= 0.738

Computing the defeat distributions for target unit #1 as an only target

Suppose that p_...( L, w; ) = 0.75, p_,,q( 1, wy ) = 0.25. Since p,, ., was assumed to be 1.0
and Paggr(1|w;, a;) = Paggr(l|wy, a;) = 1.0 as there are no other units in this example.
Pengage( 1,3 |w ) = p,, ,,/.,'ﬂ(”w’ a;, agg; ) and Pengage(l,s{w) = P,h.'ﬂ(”u” a;, agg, ) for w =
1,2.Thus

Paefeat(l ) = Paefear( 11wy 31, 888)) - Py spip( 1wy 3)5 88G; ) * Proyng( 1wy )

+ Paefear( Ll wp a8, a88)) « Pyip( 1| wy, ap 388, ) * Proyna( 1w )

+ Pacfear( 11wz 2,5, 888) - Pro anipg( 1wy ap, 388 ) - Proynal Liwy)

+ Peseat( 11w, )y 8, 388)) - Popip( 1| wz, 315 388 ) * Proyna( 1wz )

1.00 - 0.439 - 0.75 + 0.744 - 0.229 - 0.75 + 1.00 - 0.286 - 0.25 + 0.738 - 0.370 - 0.25
= 0.622
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NOTE: The probabilities of defeating unit #1 will be recomputed in the next section, when an

additional preclusion area and an additional target unit are added to the example.
Section III - SECOND UNIT, SECOND PRECLUSION AREA
Given information

Suppose we have a second unit with the following characteristics:
Radius: 500 m.
Target elements: Personnel in APCs, Transmission Factor (TF) = 0.7
Mean location ( p 3, #,2 ) = (0, 1100 )
Location variance: o2, = 2000% m? crgz = 200% m?
Since units #1 and #?2 are jointly distributed as multinormal, we must also define covariances.
Cov[X,, X3 ] = 0,42 = Pr12921952 = 0.5 (2000 )( 2000 ) = 2,000,000
Cov[ Y, Y, ] = 0y = py120,,0,, = 0.9 (200 )( 200 ) = 36,000

Puvait(2) = 1.0 (for convenience, we assume that it is available)

Target location error (TLE): pyzp = pyyp = 05 o2, = 75% m?, a"fyz = 100° m?

We also have the same weapon characteristics as before and the same required target coverage

(target defeat criterion) of 30% coverage with IT radiation effects against personnel (3000 rad).

There is a preclusion area (#2) with a radius of 500 m. located at coordinates ( x Py Y Pz) = ( 500.

1600 ). The preclusion area requirement is the same as in the previous part of this example.
Computing the necessary constants

From the above information, we can compute the required constants:
rr, = 500 m (given) _
Since the weapon and target types are the same, Tw, = 600 m. and tw, = 990 m.
For preclusion, rwl(preclusion) = 1370 + 2(150) = 1670; r,V2(preclusion) = 1960 + 2(100) =
2160.
However, the radius of preclusion area #2 is different. So the Twe, values are:

'wp, = 1670 + 500 = 2170 m; Tw,p, = 2160 + 500 = 2660 m.
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30% of a 500 m radius target area is covered by a 1 kt weapon ( tw, = 600 m ) at a distance of 925
m, and 30% of a 500 m radius target area is covered by a 10 kt weapon ( tw, = 990 m ) at a
distance of 1355 m as before. Thus

deI = 925 m and d2w2 = 1355 m.
From the r,(preclusion), er and d,y, values, we can compute rWP2 and rWPzUz for both
weapons. ,

rW1P2 = 1670 + 500 = 2170 m; rW2P2 = 2160 + 500 = 2660 m.

Yw,p,U, = 2170 — 925 = 1245 m; "w,p,U, = 2660 — 1355 = 1305 m.
From the ry, (preclusion), Tp, and d,y, values, we can compute Twe, and 'WP1U2 for both
weapons.

Tw,p, = 1670 + 1000 = 2670 m; Yw,p, = 2160 + 1000 = 3160 m as before.

Yw,p,U, = 2670 — 925 = 1745 m; Tw,p,U, = 3160 — 1355 = 1805 m.

We also need to compute the constants relative to unit #1 and preclusion area #2. From the
ry (preclusion), r P, and d  ;; values, we can compute Twe,u, for both weapons.

Twop,U, = 2170 — 925 = 1245 m; Tw,p,U, = 2660 — 1355 = 1305 m.
Thus rwpk v, = max{ rWPk vy rWP[;U]' } is easily calculated for ¥ = 1,2 and w = 1,2:

rwlPIU” = 1745 m; rW2P1U12 = 1805 m.

= 1245 m; = 1305 m.
TWP UL, M Tw,p U, m
Computing the disiributions of the distance from preclusion areas 1 and 2
(1) Unit #2:

Preclusion area #1:
pﬁpl‘_—'(pﬂ +p,,2)—(xpl +y,,p1)=(0+_0)-(1000+0)= —-1,000
Hy2p, = (Byg + Byyz) = (¥p + syyp, ) = (1100 +0) = (1000 +0) = 100
o2p, = (0% + 0hy) + (b + 0%p ) = (2000 + 757) + (0 +0) = 4,005,625
ajz,,ls(ag, +a;-’,,)+(a;1+af,,,l)=(2002+ 100%) + (0 + 0) = 50,000
Let uyp S Hzzp, +Hyop, +022p,+0yzp, and

2 _ 2 2 2 2 2 2
o2p, = 2052p (0z2p, ¥ 2z2p) + 2055p (0 2p 208y 2p))

Then
Df,,,lva[y,,,l,af,,,l] or Dg,,l»zN[ 5,065,625; 4.812 x 10'3 ], with 7,p, = 6,936,826
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Thus

2 2 2670° — uyp, )
P(D3p, > riv,p, ] = P2 > —p—1 = P[Z > 0.297] = 0.383

2-—-

P[ D? 2 =P[Z 3————160 #2P1]—P[Z>0709]-—0239

[Dp, > tw,p, ] = > =777, = 709} = 0.
17452 — p,p

P[D}p, > ty,p,u, ) = P2 > —gyp—t ] = P[Z > —0.201] = 0615
18057 — u,p,

RIS, > rlp,0, ] = PLZ > | = Pz > ~0261] = 0608

c
2P,

Preclusion area #2:
pwpzE(p,z+p,,2)~(xpz+pupz)=(0+0)_.(500+0)= —500
/.lygpzi(uy2+Iigyg)"(YPz+#typz)=(1100+0)—(1600+0)= —500
oizp, = ( o, + 0k, ) + ( ai,z +0hp,) = 20007 + 752 ) + (0 + 0) = 4,005,625
a§“,2 = (0], +0h;) +(a§,2 + afy,,2 ) = (200% + 100 ) + (0 + 0) = 50,000

Let p,,,zspﬁ,,,2+p§2pz+a§2p2+a§”,2 = 4,555,625
o5p, = 202p,(00,p, 4203 p,) + 2052p,(05,p, +28y,p,) = 3.615 x 107
7,p, = 6,012,544

Thus

\ . 2170% ~ pyp,

P[ D2P2 > I"wlpzl =P(Z> -—'—02—'}?—] = P[Z > 0.025] = 0.490
\ \ 2660 — p,p,

P[D2P2>rW2P2]=P[Z>T =P[Z>0-419]=0.338
. \ 1245% — H2p,

P[Du’, > rW1P2U2] P(Z > 77, ] ( ]

13052 — H2p,

P[D}p, > ry,p,u,] = PLZ> ] = P(Z > —0.474] = 0.682

a
2P2

Since 'ﬁprec( 'l w, a,’s a'ggi) = mgn { P[ D?Pk > r%'VPk Ui ] } and

Pao ship( 110, a;, aBg; ) = mkin { P( D;?’Pk > }'zllypk] },
Pprec( 2| wy, a,, agg, ) = min( 0.615, 0.691 ) = 0.615
Pprec(2| wy, ay, aBg, ) = min( 0.603, 0.682 ) = 0.603
Pro ,Mﬂ(2| w,, 8,5, agg, }= min( 0.383, 0.490 ) = 0.383
Pro shit 21 Wz, 82, 388, }= min( 0.239, 0.338 ) = 0.239
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Since pahiﬂ(‘zl w, 8y, 388y ) = Dprec(2|w, ay, agg, ) — Puo ,h;j¢(2|w» ay, agg, ),
p&htﬂ(QI wl, 412, a_g-gz )= 0-615 - 0-383 = 0.232
Ponise( 2] Wz, az, aBg, )= 0.603 — 0.239 = 0.364

NOTE: The closest preclusion area for target #2 is preclusion area #1, so all DGZ shifts will be

computed from preclusion area #1.
(2) Unit #1:
Preclusion area #1: The distributions were calculated in section I.

Preclusion area #2:
l‘zlpzE(ﬂ‘zl+#t:1)_(x1’2+/"t::p2)=(0+0)_(500+0)= —500
Bylp, 5(/‘y1+l‘ty1)—()’pz+#typ2)=(0+0)—(1600+0)= —1600
ai,p2 =(od 4+ 0h) + (05, + Oip, ) = (12000° + 757 ) + (0 +0) = 4,005,625
031, (05 + 0h) + (05, + 0fy,, ) = (200° + 100% ) + (0 + 0) = 50,000
Let py,, Sn;1p, + Hy1p,+ 021y, + 051, = 6,865,625
quz = 2a§,p2(¢ri”2+2p§,p2) + 2a§1p2(a§1p2+2p§1”) = 3.661 x 10*3
o = 6,050,842
Ip,
Thus
2170° = pyy,

, \ . 2660° — 4y, .
P[Di,, > rw,,, ] = Pl >—,—-1-;—1 = P[Z > 0.035 ] = 0.486

P[D,, > rly,, ] =PlZ> ] =P[Z > ~0.356 ] = 0.639

\ \ 12457 ~ py,p,
P(Dip, > twypu, 1 = PLZ > ——g7—2] = P[Z > ~0.878] = 0.810

, \ 1305° ~ 4,
P{ Dis, > ’szgU,] =P(Z> T] =P[Z > —-0.853] = 0.803

Since Pprec(i|w, a;, agg;) = mkin { P[ D?Pk > r";w,k Ui] } and
Puo ’Mﬂ( i|w, a;, agg; ) = mkin { P[ D?pk > r2WPk] },
Pprec(1|w,, a;, agg,; ) = min( 0.668, 0.810 ) = 0.668
DPprec( 1| w,, a;, agg, ) = min( 0.656, 0.803 ) = 0.656
Pno shie( 11wy @), 388 ;)= min( 0.439, 0.639 ) = 0.439
Poo shipt( 1 | wy, a;, agg, )= min( 0.286, 0.486 ) = 0.286
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Since P,h,'ﬁ( 1w, a;, a8g; ) = Pprec(l|w, a;, a8g; ) — Py, ,h,'ﬁ( 1w, a;, agg, ),
Poripel 11wy, @), a8, ) = 0.668 — 0.439 = 0.229
psh'ﬂ(l‘W2, al, aggl ) = 0-656 - 0.286 = 0.370

NOTE: The closest preclusion area for target unit #1 is preclusion area #1, so all DGZ shifts will be
computed from preclusion area #1. As a result, the probabilities of Pprec(1|w,a,, dgg,).

Pro it 1 | w, a;, agg,;), and Pynine( 1 | w, ay, aGg,) remain the same as calculated in section #1.
Computing the distributions of the distance between target units 1 and 2

The differences between the perceived locations of targets 1 and 2 are:

X-coordinate: ( X; + TX,; ) — ( X, + TX, )

Y-coordinate: (Y; + TY, ) — (Y, + TY;,)
Thus we define

Briz = (Mo + By ) = (Poz + g2 ) =(0+0) = (04+0) =0

[.lylz E(/"yl"'lutyl)—(“y2+/‘ty2)=(0+0)_(1100+0)=1100

ol12 (03 + 0y + (02 + 0hy ) + 2A=1)p;y30,0,,

= (2000 + 75%) + ( 20002 + 75% ) — 2(0.5)(2000)(2000) = 4,011,250
""';12 = ( a;",, + 05 ) + ( 032 + afyz ) + 2(=1)py120419 42
= ( 2002 + 100% ) + ( 2002 + 1002 ) — 2(0.9)(200)(200) = 28,000

Let pypo=plp+ul 3 +0l,+05,, = 9,249,250

0%, = 202 ,,(02 ,+2u2,) + 2(7;‘;12(0'312-{-2#512) = 1.285 x 10'*
o, = 11,335,667

Then .
(2-925)?

P[D}; > (d,w +d,w )] =P(2> — 121 = p[Z > —0.051 ] = 0.520

12

(2-1355)2
92

P(D}; > (d,w, +d,p,)" ] =P(Z> —F121 - p[(Z > —0.295 ]

= 0.384

Thus paggr(12|w;, a;,) = 1 — 0.520 = 0.480 and paggr(12|wy, a;,) = 1 — 0.384 = 0.616.
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Computing the aggregation and engagement probabilities

(1) Unit #1:
Recall that Pager(ilw, a;) = 1 — m;'a.x{ Paggr( 47| w, a;) - Pavait(J) - Pprec(F| w, a;, 479; ) } In
this case, for 1 = 1, there is only one j # i: j = 2. Previously we found the following:
Porec(2| w;, 85, d59,) = 0.615 and Bprec(2] wy, ay, agg,) = 0.603.
From the previous paragraph, we have:
Paggr( 12| w;, a;,) = 0.480 and Ppaggr(12|wy, a;,) = 0.616.
If we continue to assume that p,, (1) = p,,.;(2) = 1.0,
Bagor(1]wya) = 1 — { 0480 - 1.0 - 0.615 } = 0.705, and
Baggr(1|wpa,) =1 — E 0.616- 1.0 - 0.603 } = 0.629.
(2) Unit #2:
For i = 2, there is only one j % i: j = 1. In section I, we found the following:
Pprec(1{w;, a;,a99,) = 0.668 and Pprec(1]w,, ay, agg,;) = 0.656.
From the previous paragraph, we have:

paggr( 12 | w], a.Iz) = 0-480 and paggr( 12 l U)2, 312) = 0.616.

If we continue to assume that p_, (1) = Payeit(2) = L0,
Bagor(2lwyap) = 1 — { 0.480 - 1.0 - 0.668 } = 0.679, and
Bagor(2|wga,) = 1 — { 0.616- 1.0 - 0.656} = 0.59.

From this, we can compute conditional probabilities of engagement:
Penyage“»ﬂ’”)': Pavait( 1) * Pro ship{ 119 85 a79;) - Paggr(i|w, a;),
Pengage( hslw) = p (1) - P,hiﬂ(” w, 8;, a7g;) * Paggr( il w, a;),
Pengage( 5, W) = Pengage( 1,5 | W) * Proypqg( @), and

Pengage( Lsw) = Pengage( Ls|w) - pround( L, w).

In the previous section. we assumed that p_ ,..( 1,w; ) = 0.75 and p_ . ,( 1,w, ) = 0.25. Let us

assume that p_ .. .( 2,w; ) = 0.25 and p_,,.4( 2,0, ) = 0.75.
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(3) Unit #1:

(a) Weapon #1:
Pengage( 1,3 |w,) = 1.0 - 0.439 - 0.705 = 0.309
Pengage( 1, 8| w;) = 1.0 - 0.229 - 0.705 = 0.161
Pengage( 1,5, w;) = 0.309 - 0.75 - 1.0 = 0.232
Pengage( 1,5, w;) = 0.161 - 0.75 - 1.0 = 0.121
(8) Weapon #2:
Pengage( 1,5 | w,) = 1.0 - 0.286- 0.629 = 0.180
Pengage(1,s|wy) = 1.0 - 0.370 - 0.629 = 0.233
Pengage( 1,5, wy) = 0.180 - 0.25 - 1.0 = 0.045
Pengage( 1,5, w,) = 0.233 - 0.25 - 1.0 = 0.058

(4) Unit #2:

(a) Weapon #1:
Pengage( 2,5 |w,;) = 1.0 - 0.383 - 0.679 = 0.260
Pengage(2,s{w;) = 1.0 - 0.232 . 0.679 = 0.158
Pengage(2,5,w;) = 0.260 - 0.25 - 1.0 = 0.065
Pengage( 2,8, w;) = 0.158 - 0.25 . 1.0 = 0.040

(8) Weapon #2:
pengage( 2,? | w2) = 1-0 . 0-239 . 0-596 = 0-142
pcngage(2, 3' W2) = 1.0 . 0-364 . 0.596 = 0-217
pengage( 2,-3., wz) = 0142 . 0.75 . 1.0 = 0.107
pgngagc( 2, 3, UJ2) = 0-217 * 0.75 ¢ 1.0 = 0-163
Computing the AGZ and conditional defeat distributions of Unit #2 engaged as a single target
(1) No DGZ shift, Weapon type 1:
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Let p.p46z, = ElX467,=X2] = Bz + Bardi Byzuc62, = E[Ya6z,=Y2] = Byy2 + #eye-
0i2acz, = VarlX oz, ~Xp] = 0ip + 003 040462, = VarlY g6z~ Y] = 0l + 00y
Hr462,= Hiracz, + Hy2462,+ 0i2a6z,t 932462,

03462, = 295402922462, 2 462) + 29,2462,(% 2462, 252 462)
Then the squared distance between the AGZ for weapon of type #1 and the unit 2, Df, 4GZ) is:

2 - N2 2 - 2
D346z, = Dz2a6z, + Dyz462,“Nk2462,92462,]

Evaluating the terms,
Brragz, = 0iby2462, =0
ﬁuaz, = 75% + 225% = 56,250; o, AGz, = 1002 + 2252 = 60,625.
l‘?AGZI =0 + 0 + 56,250 + 60,625 = 116,875
o346z, = 256,250)° + 2(60,625)* = 13,678,906,250

The conditional probability of defeat given weapon type 1 and no DGZ shift is:

925" — i) 4gz,

— 29
ez, ] = P[Z<6.32]

pdefeat(2|wl’ a%, a?gl) = P[ DZI,AGZI Sdz] w, ] = P[ Z<
=1.0
We note that this result is identical to the result obtained against unit #1 with weapon #1, no DGZ

shift; this is due to the fact that the units are identical.
(2) No DGZ shift, Weapon type 2:

Again, the units are identical, so the result is identical to the result obtained against unit #1 with

weapon #2, no DGZ shift:

Pacseat( 2|z 01,5, 479, ) = P[D] 457, < djw, | =P[2 <
=P[Z<29.209] =1.0

1355° — ) 46z,
714Gz,

]

(3) DGZ shift. Weapon type 1:

Recall that Twp, = 2670 and E[ D§P1] = 5,065,625. Thus
_ WP
JE[DZ,)
The shifted DGZ coordinates are:
anz; = ﬂ sz + ( 1-3 ) XP] =4 ( X2+TX2 ) + ( 1-3 ) xPl
YAGZ’ =0Y,, +(1=8)yp, =B (Y,+TY;) + ( 1-8)yp,

8, = 1.186




CAA-RP-89-3

Thus

Xyzy — X2 =(A~1)X; + BTX; + (1=F) xp + CX; and

Yygp = Y2 =(8=1)Y; + BTY; + (1-5)yp + CY,.
Br24G24 = E[XAGz’—xz)] =(B—Vpzs + Bpyy + (1-8) xP1+ Bz
Byraczy = ELY 4oz—Y2l = (B=Dpys + Bugz + (1=8) ¥p + Moy
Trracz = Var(X 4 gz —X2] = (-1 0% + Bloiy + ol

2 = 2.2 2.2 2
9424625 = Var[YAng—Y.?] = (B=1)°0y; + Biogy + 0%y

Let

— 2 2 4ol g
Hra623 = Pz2aczy T Fy24623F Tr24623 % Ty24028

2 = 9.2 2 9,2 2 2 2
024625 = 292462024625t Woaa62)) 272462024625 2 2 462%)

Then the squared distance between the AGZ (based on a shifted DGZ) for weapon of type #1 and
the unit 2, D, Gzp I8t
2 _— 2 2 N 2
Dyaczs = Prza625 * Pyraczy N 462972462

Evaluating the terms,

Hoz 4Gz, = 0:085(0) + 1.085(0) — 0.085(1000) + 0 = —85 = 4, ;7
o24cze = (0-085)(2000%) + (1.085)*(757) + 2257 = 85,628
"jucz‘; = (0.085)%(200%) + (1.085)%(100%) + 225° = 61,764

Pragzy= 2(—85)% + 85,628 + 61,764 = 161,842
2(85,628)(85,628+(2)(—85)%) + 2(61,764)(61,764+(2)(-85)*) = 26,553,567,387
162,953

724624 =
724625 =
The conditional probability of defeat given weapon type #1 and a DGZ shift is:

925% ~ HBra628

— 2 2 - 1
Pdefeat( 21wy a2, 8, a79,) = P DzAsz < d”"z] =PlZs 724628 ]

=P[Z<4258] =10
(4) DGZ shift, Weapon type 2:

Recall that tyy, p = 3160 and E[ D3 p | = 5,065,625. Thus
_ _"w,P

ﬂz = = 1.404
JEC0,)
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The squared distance between the AGZ (based »n a shifted DGZ) for weapon of type #2 and the
unit #2, Df’AG’Zz' is evaluated as betore: v
2 — N2 2 . 2
Dy467y = Pezaczy Dyucz;“'N[“zAcz;"’mcz;]
Evaluating the terms,

“:2AGZ§ = — 0.284(1000) = —-284 = ”yZAGZZ,
031462} (0.284)%(2000%) + (1.284)%(75%) + 150° = 352,346
oy2aczy = (0.284)°(200%) + (1.284)%(100%) + 150° = 42,213

= 555,871
“imz;

= 379,154,252,695; o
72462

= 615,755
24GZ4

The conditional probability of defeat given weapon type 2 and a DGZ shift is:

2
1335% = 4, 4 6.2

2]

N 2 2 -
pdefeat(2|w2’ a2, S, 4992) = P[ D2A0235d2W2] = P[ Z<

724G7
= P[Z < 2.079°] = 0.981

Section IV - COMPUTING THE DGZ AND DISTRIBUTIONS OF THE AGGREGATE TARGET

Computing

Assume that target unit #1 has priority 1 and target unit #2 has priority 2. Recall that ry, =rr,

= 500 m. To compute a, we need to solve for D, = J E[ D%,/ 0 < D3, < ( d, w+d, w) | for

w = 1,2. From p. 33 of CAA-RP-89-3, if a variable U ~ N( g, 0° ) then

_ L A - o2
E[UIASUSB];uf—q)[]%ﬂ]_@[#]d,

—u
where Z(u) = Té— e ° and ®(u) is the standard normal integral evaluated at u.
T

In our problem, U = D%, , B = (d, y+d, )% A =0, 4 = E[D},]and ¢ = | Var[ D}, ].
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Weapon #1:

Recall that d, w, = d, w, = 925, and E[ D3, ] = 9,249,250. Then using the priority and target

unit size criteria for establishing a. In this problem, U = D?, , B = ( d, W1+d~’ Wl)z, A=0,u=

E[ D%,)and ¢ = | Var[ D}, ]. Thus

Dl,= E[ D3, | D}, < (d; p +dyp)?] = 9,249,250 + [%3:—332]( 11,335,667 ) = 1,768,300

and D,,= 1330.

[ dew,
a; = min{ —— ;

12

D12A‘d1wl + I'r, d?wl _ Dzzj'dzwl . [l + 2] - 1] ]
D,, rr, ¥ It,| Dy, D,; max{ (1}, (2] }

Thus
a; = min{ 0.695; 0.305 + % [0.695 — 0.305][1 + %] } = min{ 0.695; 0.598 } = 0.598

Thus the aggregate target DGZ$ for weapon #1 has the following coordinates:
X a; X, p + (l=—ay) X, B pazs = 0.598(0) + (1—0.598)(0) = 0
Y a; Y, + (1=a;) Y,y; HypGzs = 0.598(0) + (1—0.598)(1100) = 442.2 = 442

DGz =
DGzt =

(1) Computing the distributions belween DGZ'IJ and preclusion areas 1 and 2:
(a) Preclusion area #1:

We can adjust for the fact that the target units are aggregated, thus D, < df 2w

Pyrec(ij| wy, a5, agg;;) = mgn { P{ D} p, > IZWPL-U;)‘I D}, < d, w, ] { and
Pro shifel 1] Wpy5 a99;5) = min { P[Dpp, > rwp,| DIz < dizw, ] -
Recall that E[D3?,] = 9,249,250 Var[D?,] = 11,335,667°
E{D? p,] = 6,055,625 Var{D? Pl = 6,951,084

E[D2%, ] = 5,065,625 Var[D?, ] = 6,936,826>
2P, 2P,

Then using the formula on page 46 with A=0, B=d";2 wl=(2-925)2, pu=E[D%,] and o?=Var[D7,],

E(D?,1 D3, < df, ] = 9,249,250 + [-gg%g%i{]( 11,335,667 ) = 1,768,300
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304~.207 -304—.207
= 0.014 - 11,335,667 = 1.799 x 10'? = 1,341,270°

Var[D ,| D2 <d§2“’1] — { 1+ [(—.816)(.286)—(—-.514)(-350) _ [M]z } . 11,335,667

Thus for a; = 0.598,
E[Df,,,lm <d22w ] = (¢,*~a;)E[D?,|D?, <d3,w ]+ aIE[DIP ] + (1=a)E[D}p ]
= (~0.240)(1,768,300) + (0.598)(6,055,625) + (0.402)(5,065,625) = 5,232,553
Var[D},p | DIz <djpw, ]
= (a,*~a,)? Var[D?, |D22<d12W 1+ a,*Var[D?, ]+(l —a;)?Var[D3 P, ]

= (—0.240)2(1,341,270)% + (0.598)%(6,951,084)% + (0.402)(6,936,826)>

= 2.516 x 10'3; with \JVar[Df,,,I|Di2 <d},w, ] = 5,051,820

Thus

1745% — 5,232,553
P[ D},Pl > rZWIPIU”ID??Sdf_,WI] =P(2> gy | = P[Z > —0.436 ] = 0.669

2670% — 5,232,553

P[Dpp, > riyp,IDI;<dlw ] = P[Z > ] = P[Z > 0.378] = 0.353

5,051,820
(8) Preclusion area #2:

Recall that

E[D3,|D3, <d§2wl] = 1,768,300 Var[D? 2|D,2<d12w ] = 1,341,270?

E(D?, ] = 6,865,625 Var[D3 p,] = 6,050, 8422

E[D? P, ] = 4,555,625 : Var{D3 ,,2] = 6,012,544°
Thus for a; = 0.598,

E[D}p,IDI;Sd%,w, ] = (a)”—a)E[D};|D}; <dj;w ] + o,E[Dip ] + (1) E[Dp |

= (—0.240)(1,768,300) + (0.598)(6,865,625) + (0.402)(4,555,625) = 5,512,613
Var(D p, 103, <%y . |
= (a,*—a,)?Var[D},|D3,<d?, WI] + a,*Var[D? P2] + (l—a,)ZVar[D"Z,Pz]

= (—0.240)%(1,341,270)% + (0.598)%(6,050,842)% + (0.402)%(6,012,544)° =

= 1.904 x 10'%; with \lVar[D D}, <d}, w, ] = 4,363,360
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Thus

0 2 12452 ~ 5,512,613
P(Dbp, > riv,p,u,, | Diz Sdlpw, 1 = P2 > gpmen® ) = P2 > —0.008 ] = 0.818

2 2170% — 5,512,613
P[Dpp, > rzwlpzmﬁzgdfzwl] =P[Z> 2363360 ) = Pl Z > —0.184] = 0.573

Thus for weapon #1,

= N 2 2 2 2
Porec(12] w42, a99,2) = min f PIDpp, > rw,p,u,,IDiz <], ] }

= min { 0.669, 0.818 }

= 0.669

H 2 2 2 2
Pno shit{ 12 wpna15,099;5) = min % P[Dpp, > rw,p,IDi2Sdjw ] }

= min { 0.353, 0.573 }

= 0.353

NOTE: The closest preclusion area for the aggregate target formed from units #1 and #2, weapon

#1 is preclusion area #1, so all weapon #1 DCZ shifts will be computed from preclusion area #1.
(2) Computing the probability of a DGZ1 shift:

To evaluate the probability of a shift in the DGZ for the aggregate target formed from target units
#1 and #2, engaged with weapon type #1, we need to calculate the distribution of the shifted DGZ.

We begin by evaluating 8,. To do this, we need to evaluate

E( D%pllDﬁz <(d;w +d, WI)Z n azfzwlpl v, +(1"°‘1)1'%/v1p1 v,
< azD:;PI +(1"°‘1)D§P1 <‘2w1p1+(°‘1‘°’§)(d1 w,+d; Wl)z]

= (aj—o)E(D},|D}, <(d, w,tdaw )’ + E[ °’1D§P1 +(1‘“1)D§P1| oy, P, U,

+ (=a)rly p,y, < @D} p +(1—0)Dip <1l p +(a;—a})(d, w,+dow)? ]
E[D7;|D}; <(d, w, +d;w )*] has been evaluated previously as 1,768,300,
To evaluate E[ a,Dfpl +(1—a,)D§P1 | a,r%vlpl UI+(1“'°1)'2W1P1 v, < "IDLI’PI +
(l—a,)szl < rzWJPI + (a,—af)(dlwl+d2 WI)2 I, we need to determine the conditional

distribution of o, D3 p, + (1-ay) D%PI.
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Recall that

2 2 2 2
Bip Shpip, tHyip +0zip +0yip,and

2 2 2 2 2 2

o0ip, =205ip (00ip, T2zip) + 205,p (0yip +20yip -

Then D?PI&N[piPI,a?PI] and the conditional expectation given alr";,yl P, +(1-—a1)rzwl P, U;

< a,D?PI + (1=-ay) D?PI < r“@vl p,t+ (a;—a?)(d, w,* d, W1)2 can be found in the usual manner.
Bip,= 6,055,625 Bop, = 5,065,625
Iip, = 6,951,084 Trp, = 6,936,827

Then ajpp, + (1—ay) Bop, = 5,657,645
011217"12 P, + (l—ozl)2 o";Pl = 2.505 x 10'3; square root = 5,005,484.

Let U = a,Djp + (1—a,)D§,,l; gy = 5,657,645 o = 5,005,484;

A

2 2 TR o= 2 2 2,
(III'WIPI UI +(1—01)I'W1Pl Uz, B = tW1P1+(a1"‘a1)(d1 W1+d2W1) 4 then

Then E[ U|A<U <B] = 5,657,645+ [%3?:——‘%?—2](5,005,484) = 5,684,199

Thus E{ D%PI | D3, < (4, W1+dzwl)2 NA<LU<B]
= (0.598%—0.598) (1,768,300) + 5,684,199 = 5,259,107,

Recalling that twp, = 2670, and defining

. = . 'w p
Dpp = \jE[Df,P D3, < (d, p +d,1p )> N AKU<B], then 8, = —L = 1.164
1 1 1 1 Dpp

The shifted DGZ coordinates are: !
Xpezes

=B XDGZ'; +(1=8;)xp =B, (o) (X +TX;) + (1= ) (X, +TX,) ) + (1-8;) Xp,
Ypezes

=8, YDGZ‘; +(1-8,) Yp, = Byla (Y +TY,) + (1—a)(Y,+TY,)] + (1-8;) Yp,
Thus 4, pgzes = B[y (bet ) + (1=a)(popt bz} ] + (1=0;) xp = —164

and yDGzer = Brloa(sytag) + (M=a))(Byp+pys) ] + (1=8,) yp, =350
(a) Unit #1:

XDGZ‘I" ~X;=(a)8;=-1)X; + (1=a)B; Xy + a8, TX; + (1=a))B, TX, + (1=0) xPz
Ypgzee = Y1 =(af,=1) Y, + (1=a )8, Y, + a)f, TY, + (1=a)B, TY; + (1-8 ) yp,
Let #z10628 = E[XDGZT'—X’] = (8= py +(1=a)B s, + a B 1py + (1=a))B 11y
+(1=-8;) xPI
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= E[YDGZ}"_YI] = (af;=Vpy +(1=a)Bpyz + arBipg + (1—a ;)b 1py,
+ (1-6 )yP
izncz‘;’ = Var[X pgzee—Xy] = (a18;=1)%0%; + (1=a)B)) 0%,
+ 2o B == )B)Pa12021020 + (@18 0% + (1—a)B)) ol
23 = var[YDGZ‘”_ 1] = (e8=1)%0} + (1=ap)B))%0},
9(0'1131—1)((1 a)B 1)py12°yl"y2 + (a8, )2”ty1 ((l‘az)ﬁl)zd;lyl

BipGzes = #;ipgzes + “ywcza’ +o? z1pGze t o v1DGZ{’
!

Hy1DG2%

(-4

2
7,1DG

=9 2
"’uocz‘”( uocz“'*' "zzocz“) + zocz“(" 1DGze*t* “,mc;z“)

71pGzes =
Evaluating the terms, recalling that a; = 0.598 and 3, = 1.164,
HriDGze = ((0.598)(1.164) —=1)0 + (1—0.598)(1.164)0 + 0.598(1.164)0
+ (1—0.598)(1.164)0 + (1—1.164)1000 = —164
Hy1pgzes = ((0-598)(1.164) =1)0 + (1—0.598)(1.164) 1100 + 0.598(1.164)0
+ (1—0.598)(1.164)0 + (1—1.164)1000 = 351
izocz';’ = [(0.598)(1.164) —1]%(2000)> + [(1—0.598)(1.164)]? (2000)>
+ 2{(0.598)(1.164) —1][(1—0.598)(1.164)](0.5) (2000)* + [0.598(1.164)]°(75)>
+ [(1—0.598)(1.164)]% (75)* = 680,629
"izoczgs = [(0.598)(1.164) —1]*(200)* + [(1—0.598)(1.164))*(200)>
+ 2((0.598)(1.164) —1][(1—0.598)(1.164)}(0.9) (200)2 + [0.598(1.164)]> (100)>
+ {(1—0.598)(1.164)]* (100)* = 9,248
Hipgzes = 844527
71 = 1.007 x 10'%;

(24

% DG

% DG 2% = 1,003,453

(6) Unit #2:

YDGZ?S Yy =B, Y, + (B~ B;=1) Yy + o, TY, + (10 )8, TY, + (1-8) Yp,

Let “zzDGZ',” = E[XDGchu Xol =B p,y +(B—a)B=1) pipp + ;B 1ptyry + (1~a))B 40
+(1-8;) Xp,
By2pG2% = E[YDGZ«Iu‘Yz] =B py +(B— B =V pyy + a8 pyyy + (L—a)B sy,
+ (1-4, ).Vpl
290 = Var[xpnglu—xp] = (a,8,)%0%; + (B;—a,;8,~1)%0%,
+ 2 BB =B =1)p 530400y + (@180l + (1—a))B)) 0l

2
at?DG
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"iwcz‘;’ = Va'{YDGz?‘Yz] = (a;8)%5 + (B;—a,8,-1)°0},
+ A BB 1= 1B1=1)py120419y2 + (a,8))? ”zyl + ((1—“1”1)2‘7?;,1

2 2 2 . 2
BrpGze = HFr2pzet T Hy2peze ¥ 7220628 T 7y 206280
2 = 9.2 2 2 2 2 2
72pGz8* = 20, 206234(% 22 pG7e0 22 pozee) + 2"yzoaz';'("ywcz';’+2"yzDGz?")

Evaluating the terms, recalling that a; = 0.598 and 3, = 1.164,
HrapGzoe = (0.598)(1.164)0 + (1.164—(0.598)(1.164)—1)0 + 0.598(1.164)0
+ (1—0.598)(1.164)0 + (1—1.164)1000 = —164
Hy21pGze = (0.598)(1.164) 0 + (1.164—(0.598)(1.164)—1) 1100 + 0.598(1.164) 0
+ (1-0.598)(1.164)0 + (1—1.164)1000 = —750
a2, pezs = [(0.598)(1.164)]* (2000)* + [(1.164—(0.598)(1.164)—1)]*(2000)°
2[(0.598)(1.164)][ 1.164—(0.598)(1.164) —1](0.5) (2000)*
+ [0.598(1.164)]2 (75)% + [(1—0.598)(1.164))% (75)® = 1,592,629
aszcz?, = [(0.598)(1.164)] (200)® + [(1.164—(0.598)(1.164)—1)]? (200)?
+ 2[(0.598)(1.164)][1.164 —(0.598)(1.164) —1](0.9) (200)?
+ [0.598(1.164)]%(100)*+ [(1—0.598)(1.164)](100)? = 11,712
/"2062‘” = 2,193,737

wGZ,I,, = 5271 x10*%; &

Recall that p;,. (37| w, a;;, agg;;)

=[mkln{P[D20Pk > l'zwlP U‘Dlzj s UW]}—mm{P[DDP > rWPkIDU Sdi]W]}]

P[D DGZ,,,<d w ND? DGZa,<dJW]
P[D} < djjw]

= [3prcc( ij| w, a5 099,',') = Pao ,}.,’ﬂ( ij|w, LT aggij) :]

P[beaz?, <diy ND}), gzt <dly]

Paggr( 17| w a;;

. 2 2
We know that (assuming independence, as usual, between D‘. DG2% and DJ. D GZ‘I")

P(D?, Za,<d,wnD Z,,,<d wl

=1 = P[D}pgzu >diw] = P[Djpgze > diw] + P(D}pgzer > diwPID] pgzee > iy ]
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Let
) , 925% — H1pGzes
h, = P[chzg‘>d2 w,=P(Z> T oo ] =P[Z > 0.011]) = 0.496
o 9 9252 - ”2DGZ';"’
k, = P[D;DGZ.;,>d; wl=PlZ> Tbar ] =P[Z> —0.583] = 0.720

2 2 — PR
Then p[Dchz?,gdﬁ Wlnnmz?,gdf,wl] =1—h, -k, + h k, =0.141

Thus
Paipt( 12| wyh 815, 899,5) = [51’"6( 12wy, 815,899;9) = Pog shipg( 12| wp, “12,“9912)]
2 2 2 2
P[D; DGz <d; w, n DzDGZ‘I” <d; WI]

Payy'f( 12 wy, ‘112)

= - 0141
= [0.669 —~ 0.353 ] - j:zz5 = 0.093.

(=

Weapon #2:

Recall that d, w, = d, w, = 1355, and E D"}z ] = 9,249,250. Then using the priority and target

unit size criteria for establishing a,. In this problem, U = D}, , B = ( d, W2+d2 Wz)z’ A=0,u

= E[D?,]and ¢ = .l‘ Var[ D2, ] . Thus

DI,= E[D}; ID?; < (d; ,+d; 1p,)?] = 9,249,250 + [%—:-%8—3](11,335,667)

= 3,882,363 and D,,= 1970

[ d2w,
a, = min = H

12

Di;—d,w, L T dyw, Dip—d,w, I:l L2 -1 ]
D,, rr, +Ir,| D, D,, max{ (1], [2] }
Thus

a, = min{ 0.688; 0.312 + 1 [0.688 — 0.312] [1 + 1] } = min{ 0.688; 0.594 } = 0.594

Thus the aggregate target DGZ2 for weapon #2 has the following coordinates:
xDGz‘; =ay X, + (1=ay) X,y “:DGZ‘;, = 0.594(0) + (1—0.594)(0) = 0

Y a3 Yy + (1=ag) Yppi b, pggs = 0-594(0) + (1-0.504)(1100) = 446.6 = 447

DGZ4 =

NOTE: This DGZ is sufficiently close to the DGZ computed using weapon #1 that the same DGZ

could be used in practice. However, for purposes of illustration, I will compute the various

probabilities for the second weapon using the a, value of 0.594 with (”:DGZ“’ 7 ) = (0,447).
2
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(1) Computing the distributions between DGZ‘2l and preclusion areas 1 and 2:
(@) Preclusion area #1:

We can adjust for the fact that the target units are aggregated, thus D3, < df 2w,

Porec(ij| wy, a5, a99;;) = mkin { P{ DDPk > rWZPkUI.].I D3, < dJ, W2] }and

Pro shift( 7] w2184 a99;;) = min { P{Dbp, > rw,p, | DIz S dfpw, ] }
Recall that E[D32,], Var[D?,], E[D? 1P, ], Var[D? P, ], E[D? P, ], and Var[Dz,P ] remain the same.
Then using the formula on page 46 with A=0, B= duw =(2-1355)%, p=E[D?,] and

o?=Var[D?,],

E[D},| DY, < 2,4y, ] = 9,249,250 + [M]( 11,335,667 ) = 3,882,363

.433-.207
(—.816)(.286)—(—.168)(.393) "86 39372 -
Var[Di,| DI; < d, w,] {1 + [ 433=.207 433—— ] - 11,335.667

= 0.036 - 11,335,667 = 4.626 x 10'* = 2,150,800°
Thus for a, = 0.5%4,
E(D} DP, | D2, < d,,w] (@p2—a,)E[D?,| DI, < df,w ] + agE[D pl+ (1= a,)E[DzP ] '
= (—0.241)(3,882,363) + (0.594)(6,055,625) + (0.406)(5,065,625) = 4,717,399
Var[D}p | D}z < di,w, ]
= (a,’—a,)?Var[D},| D? <d;2w ]+ a,?Var[D? pl+(1- —a,)? Var[DzP ]

= (—0.241)(2,150,800)° + (0.594)%(6,951,084)° + (0.406)2(6,936,826)

= 2.525 x 10'3; with \IVar[DD p,| DIz < d};w, ] = 5,024,800

Thus

18052 — 4,717,399
P[ Dszl > fZW,PIU”l D"z’z < d?i’Wz ] = P[ Z> 5,024,800 ] = P[ Z > —=0.290 ] =
0.614

31602 — 4,717,399
P(Dpp, > riy,p,| Diz S dlaw, ] = P2 > —grigg— | = P[2 > 1.048] = 0.147
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(8) Preclusion area #2:

Recall that E[D3?,| D2 <d,,w ], Var[D},| D?, <d",’2w] E[D3 P, Var[D? P, E[D”, I
and Var[D? P2] remain the same.
Thus for o, = 0.594,
E[Dpp,| DI, < dipw,] = (a2’ —a,)E[D;| DI, < df, w,] + «2E[Dip | + (1-a3)E[D}p ]
= (—0.241)(3,882,363) + (0.594)(6,865,625) + (0.406)(4,555,625) = 4,992,116
Var[Dpp,| DI; < dfpw, ]
= (a,?—a,)? Var[D?, | D'j’2<d"l'2w ] + a,? var[D? P, 1+ Q- 02)2Var[D2P ]

= (~0.241)%(3,882,363)% + (0.594)%(6,865,625)> + (0.406)%(4,555,625)2

1.915 x 10'3; with \lVar[D | D < dj,w, ] = 4375600

Thus

2 2 1305° — 4,992,116 -
P| DDP2>r2WZP2U12| Di, < df,wz] =P[Z> 1375600 ] =P[Z>-0.752] = 0.774

2 2 2660% — 4,992,116
P[ DDP2 > r%Vszl Dl? S d?z W2] = P[ Z> 4,375,600 ] = P[ Z > 0.476 ] = 0.317

For weapon #2,

Porec( 12|w2,a,2, agg;z) = mkin P[ szpk > '2W2Pk012| D%z < d?z w2] }
0.614, 0.774 }
= 0.614

Pro shift( 121 wg,85,899,,) = “)ci" P Df)_Pk > "ngpkl D}, < df, w, | }
0.147, 0.317 }

= 0.147

NOTE: The closest preclusion area for the aggregate target formed from units #1 and #2. weapon

#2 is preclusion area #1, so all weapon #2 DGZ shifts will be computed from preclusion area #1.
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(2) Computing the probability of a DGZ; shift:

To evaluate the probability of a shift in the DGZ for the aggregate target formed from target units
#1 and #2, engaged with weapon type #2, we need to calculate the distribution of the shifted DGZ.

We begin by evaluating 8,. To do this, we need to evaluate
E[ DL p, D12 <(d;w,+dow,)’ N ayrly, p oy, +(1-ag)ty p v,
< azD'fPI +(1—az)D§P1 <r:;/V2P1 +(az—af)(d1 w, +d, W2)2]
= (a'}’-az)E[D';’2|D?25(d1 w2+d2w2)2] + E[ aszPI +(1—a2)D§P1| a2r?W2P1 v,
+ (1=ay)rly, p y, S @;Dip +(1=0ay)Dp <ty p +(az=a)(d;w,+dyw,)" ]
E{ sz | D?z < (d, W2+d2 w2)2 ] has been evaluated previously as 3,882,363.

Recall that
M p,= 6,055,625 pzpl = 5,065,625
UIPI = 6,951,084 0'21,1 = 6,936,826

Then X Mpp, + (1_"1)#2}?1 = 5,653,685
a,gafpl + (l—al)za'jpl = 2.491 x 10'3; square root = 4,998,000
Let U = a,DfPl + (l—aI)D";PI; py = 5,653,685 o = 4,998,000;
A= alrzwz P, U, + (l—al)r?w2 P, Uy B = I'ZW2 P+ (al—a';’)(dl W, +d, Wz)g: then

Then E{ U|A< U <B] = 5,653,685 + |520—=-189 14 998 000) = 7,110,345.
'889—.316

Thus E( Df,PI [ D3, < (d, W2+d2W2)2 NA<LU<B]
= (0.594% —0.594) (3,882,363) + 7,110,345 = 6,174,059

Recalling that Tw,p, = 3160, and defining

- Tw,p
Dpp, = \IE[ D}p, | DIz < (d; w,+d,w,)* N ASU<B], then 8, = D_DLP_I =
1

The shifted DGZ coordinates are:

x’
DGZ}

Y.’
DGZ%
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Thus #J:DGZ§" = *32 [ ay(pgpt iz ).+ (1—a2)(”22+“tr2)] + ( 1_”32 ) XPI = —272
and KyDG2y = By lay(uytuy) + Q—ay)(pyo+uy,)] +(1-0, )YPI = 296

(a) Unit #1:

Xpozge = X1 = (228, =1 X, + (1=02) 87 Xp + 038, TX; + (1-0)F, TX, + (1-8) xp,
Ypgzge = Y1 =1(a28:=1D) Y, + (1=02)B; Yy + 038, TY, + (1-0y)8, TY, + (1-8 ) vp,

Let 4, pgzye = E[XDGZ‘;,—X,] = (a3, =Dpyy +(1=0p)Bypyp + apBopy
+ (1—ag)Boppy + (182 ) xp,
HyipGzy = E[Yoczg"yl] = (apBy=Dpy +(1=a)Brp,5 + 38504y,
+ (l—ap)Bopy, + (1=3; ) yp
UZIDGZ‘}" = Va‘r[chzg"_xl] = (08,103, + ((1=ay)8,)%0,
+ a8, =1((1=a)B5)p,12010 5 + (a58,)°0%,; + (1—ay)8,) 0h,
UzZ;IDGZ‘;’ = Vaf[Yoczgs—YJ = (ap8,=1)0}, + (1—az)B,)%0),
+ A8, = 1)((1=a3)B)py 20,10, + (a8,5)°0%,, + (1—ay)d,) 0],
“1 pGzy = =47, o673 + "z 10678 T 2 pezy t 7 Doz’

IDGZ“" = 20, IDGZ‘"( rIDGZ“’+ /"J:IDGZ‘“) + 20, 10(;2‘“(" zoaz‘"‘" “ DGZ“’)

Evaluating the terms, recalling that o, = 0.594 and 3, = 1.272,
H:ipGzs = ((0.594)(1.272) —1)0 + (1—0.594)(1.272)0 + 0.594(1.272)0
+ (1-0.594)(1.272)0 + (1—1.272)1000 = —27°
Hy1pGzs = ((0.594)(1.272) —=1)0 + (1—0.594)(1.272)1170 + 0.594(1.272)0
+ (1—0.594)(1.272)0 + (1—1.272)1000 = 295.6
imazgs = [(0.594)(1.272) —1]?(2000)* + [(1—0.594)(1.272)]?(2000)>
+ 2[(0.594)(1.272) ~1][(1—-0.594)(1.272)](0.5) (2000)*
+ [0.594(1.272)]2(75) + [(1—0.594)(1.272)]%(75)? = 804,265
a;jmczg, = [(0.594)(1.272) —1]%(200) + [(1—-0.594)(1.272)]* (200)>
2[(0.594)(1.272) — 1][(1—0.594)(1.272)](0.9) (200)2
+ [0.594(1.272)]% (100)% + [(1—0.594)(1.272)]° (100)? = 12,345
Bipgzs = 977972
s = 1.536 x 10!%; o

(24

.
4 =12
710623 1pGzy = 1,239.480.
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(B) Unit #2:

Let w.ypezy = ElXpgyge =Xl = azfzzy +(8y=0282=1) iey + @z0508¢z
+ (1=ap)B 44z + (1-87) Xp,
#yopezy = ElYpgzee—Y2l = apfppy +(By=e2By=1pyy + 02820y
+ (1=ap)Bopy, + (i=0,) Yp,
= Var[Xpgge—X,] = (a87)%0%) + (By—az8,~1)"0%,

+ 2a8,)(By—yBy=1)p 120,10, + (@38;) 05 + (1—ay)B,) 0l

o

inczg’ = Var[Ypgzee=Y,] = (az8,)%02, + (By—az8,—1)%0,
+ 2azB8,)(By=apB8,=1)py120,10 5 + (a38,) 08, + (1—ay)B,)°0s,,

o

7:2DG23*

= ,,2 2 2 2
H2DGz8 = Hz2pezy T Hy 20628 t 7220628 Y Ty 20628

]

2 = 9,2 2 9,,2 9.2 2 9,2
720628 = 29:206734(% 2206780+ 24, 1 p628) T 29420623007 2 G2y T My 2 DG 28)

Evaluating the terms, recalling that o, = 0.594 and 8, = 1.272,
H2pGzs = (0.594)(1.272)0 + (1.272—(0.594)(1.272)—1)0 + 0.594(1.272)0
+ (1—-0.594)(1.272)0 + (1—1.272)1000 = —272
My2pGzs = (0.594)(1.272)0 + (1.272—(0.594)(1.272)—1)1100 + 0.594(1.272)0
+ (1-0.594)(1.272)0 + (1—1.272)1000 = —804.4
aing, = [(0.594)(1.272)]*(2000)* + [(1.272—(0.594)(1.272)—1)]*(2000)*
+ 2[(0.594)(1.272)][1.272 —(0.594)(1.272) —1)(0.5) (2000)?
+ [0.594(1.272)])%(75)% + [(1-0.594)(1.272))% (75)% = 1,764,265
25 = [(0.594)(1.272)]? (200)? + [(1.272—(0.594)(1.272)—1)]%(200)?
+ 2[(0.594)(1.272)][1.272—(0.594)(1.272) —1)(0.9) (200)*
+ [0.594(1.272)]2(100)% + [(1~0.594)(1.272)]2 (100)? = 14,264

2
7,206

"ZDGZ‘;‘ = 2,499,572
2 - 12, -
02062‘}’ = 6.785 x 10"*; azDGZ‘Z‘.’ = 2,604,745
13552 ~ u as
— 2 2 _ 1DGZ}" . —
) 2 13557 ~ H2pGzs
ky = P[D} pgzas > d3w,] = PLZ > T ] =P[Z > —0.255] = 0.601

Then P[DiDGZ.I,,gdf wz”DﬁoczgsSdfvw,] =1-h; — k; + h;k;, = 0.302.
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Thus
Popip( 12wy 8,5, 299;,) = [ﬁnc( 12| wj, 812,899,5) ~ Puy shin( 121z, 252, a99;,) ]

2 2 2 2
PID} pgzer Sdiw,NDypgze <dzw,]

Paggr( 12| wy, a;5)

= [0.614 — 0.147 ] - g_%%g = 0.229.

(=2

Compuling the AGZ and conditional defeat distributions of the aggregate target

Let AGZ; denote the AGZ from firing the weapon of type 1 and AGZ, denote the AGZ from
firing the weapon of type 2.

(1) No DGZ shift, Weapon type 1:
Yicz = Yi+ (1=a) Y, + o TY, + (1—a) TY, + CY,. Thus

(a) Unit #1:

XAGZI b XI = (a,—l) XI + (l—al) X2 + QI Txl + (1—0‘1) TXz + CXI and
YAGZI - Y, =(;-1)Y; + (1=a) Y, + o; TY, + (1-a;) TY, + CY,.

1]

Let Kz14G2, E[XAGZI—XI] =(a;=Dpg + (I—apgy + ajpygy + (1=0)) pypp + By
Hyracz, = E[YAGZI—Y,] =(a;=p, + (I=a)py, + o py; + (1-011)uty2 + Koy

1]

7i1a6z, = Var[X 67 =X, = (a,=1) 07 + (1=a))? 02y + 2oy =1)(1=a)ps20504
+alol + (1—a)’oly + ok
"imaz, = Var[Y, 6z,-Y,] = (a;=1)%05; + (1=a))?0); + 2a,—1)(1=a))p,;,0,,0,,
+afopy + (1—a)’ol, + ol
l‘zAGzI‘—"I‘imczl‘*'l‘izAczl+"31Aaz,+"§maz,
7146z, = 2071 462021 462, ¥ 21 1462) + 295146275162, + 2y 1 a62)
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Then the squared distance between the AGZ for weapon of type #1 and the unit #1, Df AGZp is:

2 — N2 2 . 2
D} ez, = Dz1a6z, + Dyracz,“Nl#i462p %1 462)]

Evaluating the terms,

Heragz, = (—0.402)0 + (0.402)0 + (0.598)0 + (0.402)0 + 0 = 0

Hy1acz, = (—0.402)0 + (0.402) 1100 + (0.598)0 + (0.402)0 + 0 = 442.2

Oi1acz, = (—0.402)22000% + (0.402)*2000° + 2(—0.402)(0.402)(0.5)2000°
+ (0.598)275% + (0.402)275% + 2257 = 699,962

o) 16z, = (—0.402)%200% + (0.402)% 200 + 2(—0.402)(0.402)(0.9)200°
+ (0.598)%100% + (0.402)100% + 225% = 57,110

/‘IAGZI = 952,613

o]z, = 1081 x 10'%; 7146z, = 1,015,423

The conditional probability of defeat of unit #1 as part of an aggregate target (with unit #2) given
weapon type 1 and no DGZ shift is:

- " 2 925" — 1) a2,
Paecfeat( 11 w1 8125, 099;2) = P[Dj 67 <djw 1 =P[Z < W] = P[Z<—0.096 ]
= 0.462

(b) Unst #2:

XAGZI -— X2 = al XI —(!1 x2 + al Txl + (1—01) sz + CXI a-nd

Let Pr2462, = E[XAGZI"'X2] = appy =gy F g+ (M=) g + By
py2acz, = BV agz,=Yol = apuy —aypyy + @y + (1=0)) Beyy + ey
aiuaz, =z Var[xAGZI—X2] = af o} + (—a)?ol; + 2Aa)(—a))p; 20,102

+ ol + (1—a) ol + 0%y
”f,ZAGZI = Var[YAGZI—Yz,] = a,za'f” + (—a,)zaiz + a)(—ay)py120,,9,2
+ aﬂ"fyl + (1—“1)2‘731,1 + ”Eyl
”2AGZIE";.’:2AGZI+“Z2AGZI+‘7§2AGZI+6§2AGZI

2 . 2 2 2 2 2 9,2
72462, = 2932462922462, % 2¥z2462) + 29y2462,(%y 2462, 72y 2.62)

Then the squared distance between the AGZ for weapon of type w and the unit 2, D%Aczw, is:

2 —n? 2 - 2
Dyacz, = Dz24cz, + Py2a62,~Nlk2462,%240z,]
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Evaluating the terms,

Hr2acz, = (0.598)0 + (—0.598)0 + (0.598)0 + (0.402)0 + 0 = 0

Hy2acz, = (0-598)0 + (—0.598) 1100 + (0.598)0 + (0.402)0 + 0 = 657.8

ol 2462, = (0.598)22000% + (—0.598)"2000% + 2(0.598)( —0.598)(0.5)2000>
+ (0.598)75% + (0.402)275% + 2252 = 1,483,962

o3, 162, = (—0.598)%200% + (0.598)%200% + 2(0.598)( —0.598)(0.9)200°
+ {0.598)2100% + (0.402)2100° + 2252 = 58,678

Hracz,= 1,975,340

03467, = 4513 x 10'%; 73462, = 2124,320

The conditional probability of defeat of unit #2 as part of an aggregate target (with unit #1) given
weapon type 1 and no DGZ shift is:
2
R 925" — 13 462,

— — 2 _
Pacseat(21 01 12,3, 09912) = P D467 Sdow, 1 = P12 £ —p
0.299

] = P(Z< —0.527 ]

(2) No DGZ shift, Weapon type 2:

The squared distance between the AGZ for weapon of type #2 and unit ¢, D?A Gz, is evaluated as

before.
(a) Unit #1:

Heiacz, = (—0.406)0 + (0.406)0 + (0.594)0 + (0.406)0 + 0 = 0
Hyi1aGz, = (—0:406)0 + (0.406) 1100 + (0.594)0 + (0.406)0 + 0 = 446.6
o, 6z, = (—0.406)%2000% + (0.406)%2000% + 2(—0.406)(0.406)(0.5)2000°
+ (0.594)%752 + (0.406)275% + 2252 = 712,881
751462, = (—0.406)*200? + (0.406)%200° + 2(—0.406)(0.406)(0.9)200°
+ (0.594)2100% + (0.406)? 100% + 2252 = 57,120
o746z, = 1.068 x 10'%; 7, 4Gz, = 1,033,680
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The conditional probability of defeat of unit #1 as part of an aggregate target (with unit #2) given
weapon type 2 and no DGZ shift is:

2
13567 — 4 462,
%1462,

Piefeat( 11w, 8;2,7,899;5) = P[D?AGZz,Sdzl w,l =P[Z< 1=P[Z<0858]

= 0.799
(b) Unit #2:

2467, = (0.594)0 + (—0.594)0 + (0.594)0 + (0.406)0 + 0 = 0
Hy246z, = (0-594)0 + (—0.594) 1100 + (0.594)0 + (0.406)0 + 0 = —653.4
"izAGzz = 712,881

a§2AGZ2 = 57,120

H246z,= 1,196,933

":;AGZ2 = 1.120 x 10'% 7346z, = 1,058,522

The conditional probability of defeat of unit #2 as part of an aggregate target (with unit #1) given
weapon type 2 and no DGZ shift is:

1355% — 4y 467,
21 —
TIAGE, ] = P[Z < 0.604

2

Piefeat( 21w, 072,5,099;5) = P[DL,;AGzzSdghl] =P[Z<
= 0.727

(3) DGZ shift, Weapon type 1:

We have previously evaluated the distribution of the shifted DGZ for the aggregate target, with
random coordinates ( XDGZ’I”’ YDGZ‘,"’ ). The AGZ coordinates ( xAGZj' YAGZ'; ) may simply be
determined by adding the random variables for the CEP shift in the X and Y directions ( CX, and
CY, respectively) to the X and Y coordinates of the DGZ. Thus '

Xaczy = Xpgges + Xy and Y, 5z = Y5z + CYy

(a) Unit #1:
XAGz; - X
= XDGZ?. - Xl + CXI
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YAGz; - Y,
= (01,@1—1) Yl + (I—al)ﬁl Yz + 0'1,31 TY} + (1—01),31 TYg + ( 1—,3 ) yP1+ CYI
= YDGZ?‘, bt YI + CYI
Let

Brraczy = (1 By=V) po +(M—a)Bpop + )8 e + (1—a ) B phyyy +(1-5, )XPI"' Mzt

= Hi1pGzee + Heot
Py14G2 = (a8, =D py +(1—a))B 1y +“1ﬂ1l‘zy1+(1—01)ﬂ1#¢y2+(1-51)>’p1+ Koyl

= “yIDGZ?s + l‘cyl

2

2 —_ — . 2.2 2.2
U:IAGZ} = Var[XAcz?—Xl] = (a)Bj=1)70z + (1~a))B)) 0,
2 2 2
+ e B =1~ )B1)pr12051022 + 18,05 + (1—a)B,100; + 07,
= o2 2
= 9z1pgzee ¥ Texl
2 P — 2.2 2.2
UylAGZ§ = var[YAgz-;"'YI] = (a;8,-1 oyt (Q~apB)) Ty2
2 2 2
+ 2(a;8;=1)((1~a)B)Py120,10,2 + 13,05, + (L—a})B,05,, + 04,
2 2
= %y1DGze* ¥ Teyl
-2 2 2 2
Praczy SHciacz T Hy1a623 % Tr1a62 1 %y 1462
2 = 9.2 2 9,2 9.2 2 9,2
714628 = 2921462221462 214629 T 27146280y 1 46232y 1 462

Evaluating the terms, recalling that o ; = 0.598 and G, = 1.164,

Biraczy = —164 +0 = —164
Hyragzs = —164 + 0 = —164
2 - 2 _
";maz-; = 680,629 + 235—_ 731,254
UyIAGZ? = 9,248 + 225" = 59,873
”;AGZ; = 844,919 .
olaczy = 1162x10% 0, o7 = 1,073,845

The conditional probability of defeat given weapon type 1 and a DGZ shift is:

) 2 9252"“1,402;
Paesear( 11 wp 81208, a99,5) = P[ Diacz<diw 1= Pl2Z < — 5o | = PlZ<0010]
1
= 0.504
(6) Unit #2:

XAGZ} ~ X,

= 0131 X, + (ﬂl—alﬁl—l) X2 + QlﬁlTxl + (1—&1)61 TX2 + ( 1“,3 ) xP1+ CXI
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Y, — Y,

= YDGZ‘I“ - Y2 + CYI

1628

Let

24628 = 1P 1Bz +(B1—af =Dz +aBiper + (1= )B iy +(1=B1)Xp + bey

= HBr2pGze* T Peat
“yzAsz = a;ﬂzﬂyz +(B;—a,8,-1) Hys + azﬂzl‘gw + (l-al)ﬂ1/"t‘y2'+ (1-8, )Ypl'*‘ Heyt

= Hy2pGze T Peut
2 2.2 2.2
7 2467y = VarlX g =Xl = 8,70y + (B,=a,8,~1) 0z

+ 2, B)(B1—a1B1=1)p30,10 5 + @ )B100; + (1—a))B05, + 02y

2 2
= 922p6z80 T Teni
.,

2 - 2 2 2 2
7y24624= Vaf[YAGZ;-Yzl =B 0y + (Bi—a8,=1)"0y,
2 2 2
+ 2 BB~ B1=1)py 12041042 + @810y + (L—a)Bioy, + 04y,
2 2
7y20Gz8* t ey

2 2 2 2
Bra6zt ZHz24623 T Py2a620t To2462, T Ty2a62;

2 2 2 2 2 L2 2
724625 = 2724622462222 2a628) T 29246287y 2a628 My 24628
Evaluating the terms, recalling that o; = 0.598 and 3, = 1.164,
—~164 + 0 = —164 '
/‘yzAGZ} = —750 + 0 = =750
2 — 2 _

a”AGZ; = 1,592,629 + 225° = 1,643,254

2 _ 2 _
”yzAGZ'; = 11,712 + 225° = 62,337

= 2,294,987

Hra623
g = 5.725 x 10'%

1

Fr2a62y =

9246

2 =
T ac 2= 2,392,780

The conditional probability of defeat of unit #2 given weapon type 1 and a DGZ shift is:

2
925% — 4, 420

2 Il = P[Z< —0.602
%2462 ) [Z< ]

pdefeat( 2] Wy 819, %,099;5) = P[ DgAgz? < dzz w, ] = P[ Z<
= 0.274

(4) DGZ shift, Weapon type 2:

We have previously evaluated the distribution of the shifted DGZ for the aggregate target, with

random coordinates ( xDGZ‘;‘,"’ YDGZ‘j’ ). The AGZ coordinates ( xAGZ}’ YAGZ‘} ) may simply be
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determined by adding the random variables for the CEP shift in the X and Y directions { CX, and
CY, respectively) to the X and Y coordinates of the DGZ. Thus

XAGZ'} = XDGZ‘;" + CX, and YAGZ% = YDGZ‘}‘ + CY,.

(a) Unst #1:

X4GZ’ - X :
4 2 .

YAGz; - Y

Let

Hria6zy = (@zBy=1) ppy +(1=a3)Byphoz + @28 o105y + (1= p)Bopycy +(1=87)Xp + pey
= Biipazy T Mooz
Hyraczy = (azBy=Dpy +(1=ap)Brpys + @2Bopy + (1—ap)Bopys + (1=B2)¥p + peys
= By1DGzy T Pey2
r1a75= VarlX g =X] = (az8,=1)"0%; + (1~a;)B5) 0%,
+ 2AayBy=10(1=02)B)Ps120 1100y + a2By00y + (1—ay)By00 + 07y
= "Zzocz;' + 0 | '
oy 14625 = VoY gz =Yl = (228,105 + (1~a;)B8,)%0),
+ 208, —1)((1=ap)B2)py 20410, + @3B20%,; + (1—a,)B8,0%,; + 03y

2 . 2
o T T
yi DGZ;" ! ~y2

2 2 2 2
Praczy SHeraczyt Pyiacey T %c1a624 % %y1462

2
-

2 =9 2 2 9,,2 9 2 9 2
0462 = 2021462214622 1 a628) T "’ymcz’(’yucz"*‘“/‘yucz’)
2 2 2 2 2 2 2

Evaluating the terms, recalling that o, = 0.594 and 3, = 1.272,
—-272 + 0 = =272
Byraczy = 295.6 + 0 = 295.6
2 _ 2 _
O 14GTY = 804,265 + 225° = 854,890
12,345 + 225% = 62,970

#IIAGZ; =

2
ay 1 AGZ;
= 992,140
K146z

2 _ 12, -
UIAGZZ, = 1.723 x 10°%; U:AGZ'} = 1,312,505
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The conditional probability of defeat given weapon type 2 and a DGZ shift is:

13552 — 4 .
o LAGZ
Pdefeat(llwzvalrs’ agg;2) =P[ D.I'AGZ; < d.zl WZ] =PZ< 714678 ‘ ]
= P[Z < 0.643 ] = 0.740. ?
(5) Unit #2:
XAGz; — Xy
= a8, X; + (By—ayB,—-1) Xy + a8, TX; + (1—-0,)8, TX, + (1-8) xp, + CX,
Yagzy — Yz
= agB; Y, + (Br=0B,=1) Yy + aB, TY; + (1-a,)B, TY, + (1-8 ) yp + CY,
Let

Broaczy = @2Bzboy H(Bo—asBy—Npoy + agBopey +(1=ap)Bopygy +(1=8)%p + tey

= PBrapezy T Hee2 '

Byoaczy = @2P2by +(Ba=asBy=1) pys + azBopyy + (1—ap)Bopyyy + (1-82)yp + ey
= By2pGzer T Hey2
2 2
”:uaz; = Va’[XAGZQ‘le = (a;8;)%03; + (/92"0‘232_—1)2‘7:-2

+ 2apBy)(By—0sBy=1)pr120010 5 + agB30% + (1—ay)B,0%; + 05y
o3 2pGz8 + sz
"ZMGZ; = VarlY 570 =Y, = (@2B2)'05; + (By—ayB;~1)"0),

+ e B8,)(By—azB,=1)p, 120,10, + ayB,0%,; + (1—ay)B,05,, + 03y,
=0, 2p6z80 + Tenz
Mraczy, =WHizaczyt My2a62y T 224624+ 42462,

2 = 942 2 2 2 2 9,2
024675 = 2902462522462y M 24628) 29246257y 2462 2Hy 24628

Evaluating the terms, recalling that dz = 0.594 and 3, = 1.272,

#zzAGZZ, = =272 + 0 = 272
“y2AGZ§ = ~8044 + 0 = —804.4
o2 Gz, = 1,764,265 + 225 = 1,814,890
7y 2aGz, = 14,264 + 225% = 64,889
Hragzy = 600,822
a3 agzl, = 7301 x 10'% o, Gzt = 2702,060
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The conditional probability of defeat of unit #2 given weapon type 1 and a DGZ shift is:

13552

) ) . ~ K462
Pdefeat( 21 Wgr 1215, 099;2) = P[ DzAGz; s d2W1] =Plz< 92462 ]
2
= P[Z < —0.283] = 0.389.
Computing the probabilities of engagement of the aggregate target
Pengage( 1.2 5 [w;) = Puyait(1) " Paoait(7) * Ppy ,hiﬂ(lvzlwl’ 812:699;5) * Paggr(1,2|wj ay,)

= (1)(1)(0.353) (0.480) = 0.169

Pengage( 1,2; s| "-’1) = Pa,,au( i) - P”au(j) . P,h,‘ﬂ( 1,2| Wy, 81989955 ) * Paggr( 1,2 | Wy, 012)
= (l)(l)(0.093)(0.480) = 0.045

Pengage( 1,235 | w3) = Puygit(3) * Payait(J) * Pryo ,h,'ﬂ( 1,2| wy, 872, a99;5) + Paggr(1,2|wy,0,5)
= (1)(1)(0.147) (0.616) = 0.091

Pengage( 1,2; s) wz) = Pa,,,,,'z( 1) - P,,,,.,,'{(j) : D,/,,'ﬁ( 1,2| Wy, Gy, 099;5) - Paggr( 1,2] Wy, ayp)
= (1)(1)(0.229)(0.616) = 0.141

Suppose that p_,..(w;|a;;) = 0.4 and p, .4(wy|a;2) = 0.6. Then

Dengage( 1,2; 3;w;) = Pengage( 1,2; 7 | wy) . Prounal wyla;2) = 0.169(0.4) = 0.068
Pengage( 1,2; 8;w;) = Pengage( 1,2; s{w;) - Prouna( w1 ay5) = 0.045(0.4) = 0.018
pengage( 1,2 T3 wp) = Pengage( 1,2 T |wg) « B,punal ] a12) = 0.091(0.6) = 0.055
Pengage( 1,2; 8 wy) = Pengage( 1,25 | wy) * Proynal wyla;2) = 0.141(0.6) = 0.085

SECTION V. COMPUTING THE PROBABILITIE: OF DEFEAT
Computing the probabilities of defeat of target unit #1

pdcfeat( l|lw) = Pdefeat(llwh“v?va?yl) * Pengage( 1,3 |w))
+ Pdefeat( 1123118, 6G9)) * Pengage( 1, 8| w)
+ pdcfeat( 1w}, 8,5,9,899,5) * Pengage( 1,2;F | w))
+ Paefeat( 11 W), 812,9,690;3) - Pengage( 1,2; 8| w))
= 1.0(0.309) + 0.744(0.161) + 0.462(0.169) + 0.504(0.045) = 0.530
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Pacfeat( 112) = Pyepear( 1wy, 8,5, 099 ,) - Pengage( 1,3 | w))

pdcfeat( l’wl) :

pdefeat( L, w2)

+
+
+

<+
+
+

+ + +

pdefeat( 1| wy, a;,8,d0g;) * Pengage( 1, 8| wy)

Pdeeat( 11 W218,2,5,899;5) - Pengage( 1,2, 3 | wy)

Pdcj,u(llwz, P IRD 09912) * Pengage( 1,2; Slwz)

1.0(0.180) + 0.738(0.233) + 0.799(0.091) + 0.740(0.141) = 0.529

Piefeat( 11wy, 8,5, a9 ) - Pengage( 1, S, w))

Pacfeatl 11 w}2 6158, 499 ,) - Pengage( 1, 5, w))

Pacfeat( 11012 612:5,899;5) - Pengage( 1,23, w))

Pacfeat( 11 w}s 81215, 899,2) * Pengage( 1,25 5, w))

1.0(0.232) + 0.744(0.121) + 0.462(0.068) + 0.504 (0.018) = 0.363

Paefeat( 1| w2, 01,5, 099)) - Pengage( 1, 0y)

pdefeat( 1wy, a;,5,679;) * Pengage( 1, 5, wy)

Pdefeat(llwzv @;2,5,89915) * Pengage( 1,2; 5, wy)
Pdeeat(11wg, 815, 5,899,5) - Pengage( 1,25 s, wy)

1.0(0.045) + 0.738 (0.058) + 0.799(0.055) + 0.740(0.085) = 0.195

With only two weapon types available in this example,

pdefeat( 1 )

= Paeeatl 11 W) + Pgopeae( 1 wy)

0.363 + 0.195 = 0.558

Computing the probabilities of defeat of target unit #2

pdcfeat( 2 I wl) = pdejeat 2 I wy, a?’?' “792) ) Penyagc("u), s | wl)

pdefeat( 2 I w?)

+
+
+

+ + +

(
Pdefeat( 2| w1 82,8, 470 ;) - Pengage( 2, 8| w))
Pdefeat( 2| w2 812,7, 899, 5) - Pengage( 1.2: 5 [w))
Pdeseat( 21 W11 8121 3,899;2) - Pengage( 1,2; 8| w;)
1.0(0.260) + 1.0(0.158) + 0.299(0.169) + 0.274(0.045) = 0.481

pdejea¢(2lw27 89,3,479 ) * Pengage( 2, T |wy)
Piefeat( 2] W3y 82, 5,039 5) + Pengage( 2, 8| wy)
Pieseat( 2| w2, 872,5,899,5) - Pengage( 1,2, | wy)
Piefeat( 2| W21 872,3,899,5) - Pengage( 1,2; 5| w))
1.0(0.142) + 0.981(0.217) + 0.727(0.091) + 0.389(0.141) = 0.476
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pdcfeat( Zw) = pdejeat(2 | Wy, 85,5,099 ;) - Pengage( 2, T, w;)
+ pdefeaz(Qlwu 8, 5,079 ) - Pengage( 2, 5, w))
+ Pueseat(21 W), 815,5,899;5) + Pengage( 1,255, w))
+ pdefeat(?‘lwl’ 8)2:5,099;3) * Pengage( 1,25 5, w))
= 1.0(0.065) + 1.0(0.040) + 0.299(0.068) + 0.274(0.018) = 0.130

Pdefeat 20W2) = Peseat( 2| w2, 82,5, 099,) - Pengage( 2, T, wy)
pdcfeat(Qle’ 7,5, 699 7) - Pengage( 2, 5, W)

pdefeat( 2| wy,8,5,5,899,3) * Pengage( 1.2; 3, wy)

+ 4+ 4+

pdefeat( 2 l Wy, B9y 5, (19912) . Pcngage( 1,2; s, w2)
1.0(0.107) + 0.981(0.163) + 0.727(0.055) + 0.389 (0.085) = 0.340

With only two weapon types available in this example,

Paefeat{ 2) = Pdefeatl 20 ¥1) + Piefear( 20 W3)
= 0.130 + 0.340 = 0.470
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APPENDIX H
EXAMPLE OF PROUND PARAMETER ESTIMATION

Section I - COMPUTING THE RELEVANT PROBABILITIES
Given Information

Suppose there are 10 targetable units with the following characteristics:

Unit # 1,2,3 : Infantry battalion Priority : 3
Unit # 4,5,6,7 : Tank company Priority : 2
Unit # 8,9 : Artillery battery Priority : 2
Unit # 10 : Missile launcher Priority : 1
Suppose there are 3 firing units available to attack these units:
Firing Unit # 1,2 : Artillery battery Weapon : 1 kt AFAP
Firing Unit # 3 : Missile launcher Weapon : 10 kt missile

We have the following range information: For each firing unit, the following targets are in range:
Firing Unit # 1 : Units # 1,2,4,5,8
Firing Unit # 2 : Units # 1,2,3,5,6,8,9
Firing Unit # 3 : All Units

We have the following fire preferences:

Unit # First preference Second preference

1,2,3 : Infantry bn. 10 kt missile None ( 1 kt too small)
4,5,6,7 : Tank co. 1 kt AFAP 10 kt missile

8,9 : Artillery bt. 1 kt AFAP 10 kt missile

10 : Missile In. 10 kt missile None (all arty out of range)

If we combine the fire preference with the range information, we can tabulate a binary variable

RF(i,j,w) = 1if unit ¢ can be fired on by firing unit j using weapon w; 0 otherwise:

Unit | 1 2 3 4 5 6 7 8 9 10
FU#1 |1 I 0 [ 1 0 0 1 0 0
FU#2 |1 1 1 0 1 1 0 1 1 0
FU#3 |0 0 0 1 1 1 1 1 1 1
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NOTE that the smaller yield weapon is always preferred in cases where either weapon is available

(“bottom-up” allocation).
Compuling the Probabilities
(1) Weapon # 1 (1 kt):

We are given the following values for pager( 4| w), a;;):

Unit 1 2 3 4 5 6 7 8 9 10
i1=1 - 4 1 2 0 0 0 1 0 0
j=2 4 - .6 1 3 1 0 1 2 0
i=3 1 6 - 5 2 0 1 0 3 0
j=4 2 1 5 - 4 2 1 0 0 0
J=5 0 3 2 4 - A4 2 1 0 0
j=6 0 1 ] 2 4 - 4 0 2 0
=7 0 0 .1 A 2 4 - 4 1 0
1=8 1 1 0 0 1 0 4 - 1 0
Jj=9 0 2 3 0 0 2 1 1 - 0
j=10 0 0 0 0 0 0 0 0 0 -

We are given the following values for p,,..,(#) and Bprec(i| v, a;, a7y, ) :

Unit ' ! 2 3 4 5 6 7 8 9 10
Pavait( 1) ] -0 .6 .5 7 N T .5 4 .3 2
DPprec( il | .3 .6 9 4 .6 .8 1.0 4 9 1.0

From paggr( ijl w), 8;5), Pavaii( 1), and Pprec(i| wy, a;, agg;) we can compute Paggr(i| wy,a;,). Recall
that Pager(i| wpe;) = 1 — m]ax{ Paggr(5| wp8y) * Puygit(7) + Porec(J| s 0, 0799;) } The
following table shows values for the ith column, jth row of pager(ij| wy, ;) - Pavait(J) + Pprec(yl

wy, 6%, 499, ). For example, the calculation for 1 = 2, j = 4: paggr( ij| wpag) = 15 Poyu(y) = .1

Dprec( J] wy, 8;,499;) = .4; product = .028.
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1= 1 2 3 4 ) 6 7 8 9 10
Jj=1 - 060 015 .030 O 0 0 015 0 0
J]=2 144 - .216 036  .108 036 0 036 072 0
j=3 045 270 - 225 090 0 045 0 A35 0
j=4 .036  .028 .140 - 112 056 028 0 0 0
J=5 0 126 .084  .168 - 168 .084 043 O 0
Jj=6 ] 056 0 112 224 - 224 0 1120
=7 0 0 050 050  .100 200 - 200 050 0
)= 016 .016 0 0 016 0 064 - 016 0
J= 0 054 081 O 0 027 027 027 - 0
j=10 0 0 0 0 0 0 0 0 0 -

Choosing the largest value in each column gives us ma,x{ Paggr( 17| Wi 85) * Payait(7) - Pprec()]
w), 4;,499;) } with the corresponding j* that maximizes the product. Thus Baggr( i| w;, a; ) values for

t=1...., 10 are: !

Unit |1 2 3 4 5 6 7 8 9 10
Pager(i] | .856  .730 .784 775 .776  .800 .776  .800 .865 1.0
7* 2 3 2 3 6 7 6 7 3 -

We are given the following values for Pprec(i|wy,q;,dgy;), pn“,“-ﬁ( ilw;,a;,4d99;), and

P,h,‘ﬁ( 1| wy, a;, a99;):

Unit | 1 2 3 4 5 6 7 8 9 10
Bprec(i| |3 6 9 4 6 8 1.0 4 9 1.0
Puo shifel i1l -2 4 6 2 4 5 9 3 5 1.0
Ponip( i | -1 2 3 2 2 3 1 1 4 0

We are given the following values for Pprec( ijlw,,aij,agg‘-j), P ,,“-ﬂ( i wy, a, agg,-j), and
Paning( 9] wy, a5, agg;;) for the j* values which maximize m]ax{ Pager( 7] w8;5) « Puyait() - Porec( ]

wy. a;, a?gj ) }
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Pair | 1,2 2,3 3,2 4,3 5,6 6,7 7,6 8,7 9,3 10
Pprec(if| | .5 7 T 7 7 9 9 .6 9 -
pno Jhlﬂ( x] .2 .4 -4 -35 .4 .5 -5 ~4 .6 -
Parisel 011 | -2 2 2 3 25 .35 .35 .15 .25 -

(2) Weapon # 2 (10 &kt ) :

We are given the following values for pager( 17| w,, a;;):

Unit | 1 2 3 4 5 6 7 8 9 10
j=1 - 6 3 4 1 0 1 4 1 0
i=2 .6 - .8 2 .5 3 1 2 3 0
;=3 3 .8 - 9 5 1 3 .1 5 0
j=4 |' 4 2 .9 - .8 4 2 2 1 0
ji=5 .1 5 5 8 - .9 3 .2 .2 0
ji=6 0 3 A 4 9 - .8 1 4 0
i=T7 1 1 3 2 3 .8 - .8 3 0
j=38 4 2 1 2 .2 1 .8 - 2 0
i=9 1 3 5 1 2 4 3 2 - 0
ji=10 0 0 0 0 0 0 0 0 0 -

We are given the following values for p,,...(1) and Bprec( 1] w,, q;, dgg, ) :

Unit |1 2 3 4 5 6 7 8 9 10
Pavait{1) ] -0 .6 .5 T a a 5 4 3 2
Pprec(i] | .2 4 .8 3 5 T 9 2 T 1.0

From pagger( ij| w,, 8;) P,yait( 1), and Bprec(i| wy, a;, agg;) we can compute Paggr(i| wy,a;,). Recall

that -I-saggr(il Wy, a,-) =1 - mja.x{ Pagyr(ijl Wo, a,-j) . Pa,,a,'z(j) : -lsrrec(jl szajva?gj) } The

following table shows values for the ith column, jth row of paggr( ij| wy, a;; )

w]v a]" a?gJ ):

H-4

) pavail(j) : BP"'CC(J‘I




CAA-RP-89-3

i= | 1 2 3 4 5 6 7 8 9 10
ji=1 | - 060 .030 .040 .010 O 010 040 .010 O
j=2 | 144 - 192 .048  .120 .072  .024 .048 072 0
j=3 | 120 32 - 360 .200 .040 .120 .040 .200 O
=4 | 084 042 .189 - 168  .084 .042 .042 021 O
j=5 | 035 .175 175 .280 - 315 .105 070 070 0
i=6 | 0 147 049 .196 441 - 392 049 .196 0
j=7 | .045 .045 .135 .090 .135 .360 - 360  .135 0
j=8 | .032 .016 .008 .016 .016 .008 .064 - 016 0
j=9 | .021 .063 .105 .021 .042 .084 .063 .042 - 0
j=10 | 0 0 0 0 0 0 0 0 0 -

Choosing the largest value in each column gives us max{ Paggr( 4| wy, a;) - Pavait(J) + Porecl /]
]

wy, a;, a?gj) } Thus Paggr(i| wy, a;) values for i = 1, ..., 10 are:

Unit | 1 2 3 4 5 6 7 8 9 10
Paggr(t] { .856 680 .808 .640 .559  .640 .608 .640 .804 1.0
i 2 3 2 3 6 7 6 7 6 -

We are given the following values for Dprec(i| wy,aq;,d39;), B,, 3hiﬂ(i| wy, a;,agg; ), and

Ponip( il wy, a;,a79;):

Unit | 1 2 3 4 5 6 7 8 9 10
Bprec(il | .2 4 8 3 5 T 9 2 7 1.0
Bro anipe( il] -1 2 3 1 2 2 3 4 1 9
Panin(il | -1 2 5 2 3 4 5 1 5 1

We are given the following values for Pprec( | w,, a5 agg,-j), Pao slu'ﬁ( ij| wy, a;, 899;; ), and
Bonipel ] wy, a5, a9g;;) for the j* values which maximize max{ Paggr( i) w1y 6;5) - Prygi(s) + Bprecl ]
]

w[s aja d?g] ) }
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Pair | 1,2 2,3 3,2 4,3 5,6 6,7 7,6 8,7 9,6 10

Pprec(ij] | -3 6 6 5 6 8 8 5 7 -
Pro ship( 1] 05 .25 .25 2 .25 .35 .35 .2 2 .
Ponipl 7] | -2 3 3 25 .3 4 4 .25 4 -

Computing the Conditional Probabilities of Engagement

Reca" that penyagc( i,?,l tﬂ) = pavail( i) . pno Shlﬂ( 3' w, ai, a?g,) . Eaggr( zl W, a') and
Pengage( s, | w) = Pa,,agl(") . P,/;.’ﬂ(” w, a;, a‘g'g‘-) * Paggr( i| w, a.')-
Similarly, pengage(:3,| W) = Puygii(#) * Puyait(7) * Pao shiﬂ(ijl W, @, 099;,') * Paggr( 4| w, a;;) and

Pengage( 1,8, W) = Pgygi(1)  Paygi(d) - P,/,.‘ﬁ( ] w, a5 agg'»j) * Paggr( 9| w, a;;

(1) Weapon # 1 (1 kt):

Unit 1 2 3 4 5 6 7 8 9 10
Pengage( 4,3 | .086 .175 235 109 217 .280 349 096 .130 .200
Pengage( i, s | .043 .088  .118 .109 .109 .168 .039 .032 .104 O
Pengage( 1| wi .129  .263 .353 218 .326 .448 .388 128 234 .200

Unit 1 2 3 4 5 6 7 8 9 10
Pengage( 9,5 .024 072 072 .061 .176 .070 .070 .032  .027 -
Pengage(j,s| .024 036 .036 .053 .110 .049 .049 .012 .011 -
Pengage(#j|u .048 .108  .108 .114  .286 .119 .119 .044 038 -

(2) Weapon # 2 (10 kt ) :

Unit | 1 2 3 4 5 6 7 8 9 10
Pengage( £, 3 | .040 .082 121 .045 078 134 122 .026 .048 .180
Pengage(t.s { .040 .082  .202 .090 .117 .179 .152 .026  .121  .020
Pengage( ¢|wi .080 .164 323  .135 .195 313 .274  .052 .169  .200
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Unit | 1 2 3 4 5 6 7 8 9 10
Pengage( 1/, 5| 009 .060 .060 .063 .110 .098 .098 .032 .015 -
Pengage(ij,s| 036 072 072 079 .132 .112 112 .040 .030 -
Pengage( ij]ul 045 .132  .132  .142 242 210 210 .072 .045 -

If we combine the single and aggregate probabilities to get a probability that target unit i is engaged

either as a single or aggregate target, we get:

Unit | 1 2 3 4 5 6 1 8 9 10
Pengage( isUiglw;)| 177 371 461 .332 .440 .567 .507 .172 .272 .200
Pengage( isUig|w,)| .125 296 455 .270 .437 523 .484 .124 .214 .200

Section II - ESTABLISHING THE ALGORITHM FOR PARAMETER ESTIMATION

Theory

To develop a Monte Carlo estimate of the probability (by weapon type) that a round is available
for a given target unit, we begin by generating realizations of single and aggregate target sets. To do
this, we draw against the probability that the target unit is available for fire as follows:

ALGORITHM:

1. For each target unit 1, : = 1, ..., m,

2. Draw U; ~ Uniform( 0,1 ).

3.  For each weapon type w, w = 1, ..., nw,

4 Using j maximizing { Pager( 7] w, a;) - Pavait(71 @) * Pprec( il w, ;s a'g'gj) },

if U; < pengage(i] w) + Pengage(ij| w), let B(4,w) = 1

5 Also if U; < pengage(i] w), let A3, w) =1

6. End if

7. End loop on w

8. End 'sop on 1

9. The available target set is generated as follows:

If B(4,w) = 0, target unit : is not available for fire
If A(f,w) = 1, target unit i is available for fire as a single target

If A(4,w) = 0 and B({,w) = 1, target unit ¢ is available for fire as an aggregate target
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For convenience in notation, define the following values for the encoding of the algorithm:
PSINGLE(4, w) = pengage(i] w)
PAGGR(yw) = Pengage( il w) + Pengage( | w)

Section IIl - A PROGRAM FOR MONTE CARLO P, ESTIMATION
A simple SIMSCRIPT program was written to generate Monte Carlo estimates of p_ ... ,(w|a,) for
the 10 target units, 3 firing units and two weapon types given in Section I. This program is not
intended as an example of an efficient program for generating these estimates; rather it serves as an
example of an implementation of the algorithm in Section II. Implementation of the NEMESIS
research will entail writing a more efficient program, operating with the same logic, to generate the

estimates.
The Ezample Logic

The various data developed in the previous sections were read into the code. The single targets
were defined for i = 1, ..., 10 and the aggregate targets were defined for : = 11, ..., 20 where, for
example, target 14 was the aggregate pair formed by target unit #4 and its pair (in this case, target
unit #3). The fire preference matrix and the range factor matrix were combined to form a single
matrix FPREF(I,J) where I = target unit and J = firing unit. For aggregate targets, the fire
preference was equal to the product of the preferences for both target pairs. Thus, an aggregate Larg;:t
pair could only be fired upon by a firing unit if botk of the target units were on the firing preference list
for the firing unit. The fire priority for aggregate targets was assigned as the maximum of the priority
for either of the aggregated targets. In one case (target unit #9), the aggregate pair depends upon the
weapon type involved. Rather than establishing a 2-dimensional priority (unit by weapon type), I used
a priority equal to the maximum of the first unit and the minimum of either of the second
(aggregated) units selected by weapon (see line 58 of the code).

The output value was p_,,..(w|a;) for single targets and p_,,.,(w|a;) for (i) aggregate target
pairs. This probability represents the probability that a round of type w is available for assignment to
the target i or ij, given that neither unit i or j have been allocated a weapon previously and that the
target has a firing unit of the appropriate type that can engage the target (the fire preference is equal
to 1). It is developed separately for single vs aggregate targets and incorporates the range factor

consideration.
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Three runs were made for illustration. The first run had only 1 weapon available per firing unit.
The second run had 2 weapons available per firing unit, and the third run had 4 weapons available for
firing units 1 and 3 with 2 weapons for firing unit 2. The p_ ... values are higher than might be
expected, since the PSINGLE and PAGGR values are so low (since they are low, there were often only
one or two units that were available for engagement per replication, thus a unit available for

engagement generally had a weapon available in each replication).

SIMSCRIPT Code used to Generate Ezample

1 PREAMBLE
2 NORMALLY MODE IS REAL
3 END

—

MAIN
DEFINE PSINGLE,PAGGR AS REAL, 2-DIMENSIONAL ARRAYS
DEFINE A,B,CA,CB,PROUND,CROUND,IPAIR,FPREF AS INTEGER, 2-DIMENSIONAL
ARRAYS
4 DEFINE PRLENGAGE AS INTEGER, 1-DIMENSIONAL ARRAYS
5 DEFINE L,J,K,LLNW1,NW2,NW3,N,W AS INTEGER VARIABLES
6 RESERVE PSINGLE(s,%) AS 10 BY 2
7
8

[ N

RESERVE PAGGR(*,+) AS 10 BY 2
RESERVE A(#,%) AS 10 BY 2
9 RESERVE B(x,%) AS 10 BY 2
10 RESERVE CA(*,+) AS 10 BY 2
11 RESERVE CB(,+) AS 10 BY 2
12 RESERVE PROUND(s,%) AS 20 BY 2
13 RESERVE CROUND(s,%) AS 20 BY 2
14 RESERVE IPAIR(#,+) AS 10 BY 2
15 RESERVE PRI(x) AS 20
16 RESERVE FPREF(»,+) AS 20 BY 3
17 RESERVE ENGAGE(+) AS 10
18 FORW =1TO2DO
19 FORI=1TO 10 DO

20 READ PSINGLE(I,W)
21 LOOP
22 LOOP

23 FORW=1TO2DO
24 FORI=1TO 10 DO

25 READ PAGGR(I,W)
26 LOOP
27 LOOP

28 FORW=1TO2DO
29 PRINT 1 LINE WITH W THUS

WEAPON # #x:

31 FORI=1TO 10 DO

32 READ IPAIR(I,W)

33 PRINT 1 LINE WITH L[LW,PSINGLE(I,W), I[PAIR(I,W), I, W,PAGGR(I,W) THUS
PSINGLE(##,%) = #.xxx FOR J = **, PAGGR(#%,%) = *.x%x

35 LOOP

36 LOOP
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37T FORJ=1TO3DO
38 FORI=1TO 10 DO

39 READ FPREF(1J)
40  LOOP
41 LOOP

42 FORI1I=1TO 10 DO
43 FORJ=1TO2DO
44 LET FPREF(10+1,J) = FPREF(1,J) » FPREF(IPAIR(I,1),J)
45 LOOP
46 LET FPREF(10+I1,3) = FPREF(1,3) * FPREF(IPAIR(I,2),3)
47 PRINT 1 LINE WITH LFPREF(L1), , FPREF(1,2), L FPREF(1,3) THUS
FPREF(*#,1) = *x  FPREF(*%,2) = #x  FPREF(*%,3) = #*
49 LOOP
50 LET FPREF(20,3) =0 “CORRECTS FOR FACT THAT WEAPON 10 HAS NO
AGGREGATE PAIR '
51 FORI=11TO 20 DO
52 PRINT 1 LINE WITH LIPAIR(I-10,1),FPREF(1,1), IPAIR(I-10,1), FPREF(I 2),
53 LIPAIR(I-10,2),FPREF(I1,3) THUS
FPREF(x#,#x,1) = **  FPREF(#*,%%,2) = ¥+  FPREF(#%,%%,3) = #x
35 LOOP
56 FORI=1TO10 DO
57 READ PRI(I)
58 LET PRI(10+1) = MAX.F( PRI(I), MiN.F(PRI(IPAIR(I,1)),PRI(IPAIR(L,2)}) )
59 PRINT 1 LINE WITH I,PRI(I),I+10,PRI(I+10) THUS
PRI(#x) = *x  PRI(*x) = *x
61 LOOP
62 READ NWI1
63 READ NW2
64 READ NW3
65 READN
66 PRINT 4 LINES WITH NW1, NW2, NW3, N THUS
WEAPONS AVAILABLE:
1 KT, FIRE UNIT 1: #x 1 KT, FIRE UNIT 2: +« 10 KT, FIRE UNIT 3 : +=
NUMBER OF REPLICATIONS : sxx%xx

71 LET NWIT = NW1

72 LET NW2T = NW2

73 LET NW3T = NW3

74 FORI=1TO 10 DO
75 FORW =1TO 2DO

76 LET A(LW) = 0
77 LET B(L,W) = 0
78 LET CA(LW) = 0
79 LET CB(LW) = 0
80  LOOP

81  LET ENGAGE(l) =
82 LOOP

83 FORK=1TONDO
84 FORI=1TO 10 DO
85 FORW =1TO 2 DO

86 LET U = RANDOM.F(1)
87 IF U < PSINGLE(L,W) + PAGGR(I,W)
88 LET B(LW) = 1
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89 IF U < PSINGLE(L,W)

90 LET CA(I,W) = CA(LW) + 1
91 LET A(LW) = 1

92 ELSE LET CB(I,W) = CB(LW) + 1
93 ALWAYS

94 ALWAYS

95 LOOP

96  LOOP

97 FORL=1TO3DO

98

99 ” AGGREGATE TARGETS I = 11,20
100 ™

101 FORI=1TO 10 DO
102 IF PRI(I+10) NE L GO TO NEXTI ALWAYS
103 IF A(I1) = 0 AND B(I]) >0 “AGGREGATE TARGET

104 IF FPREF(I+10,1) = 1 AND ENGAGE(I) = 0

105 LET CROUND(I+10,1) = CROUND(I+10,1) + 1
106 IF NWIT > 0

107 LET PROUND(I+10,1) = PROUND(I+10,1) + 1
108 LET ENGAGE(D) = 1

109 LET ENGAGE( IPAIR(],1) ) = 1

110 LET NWIT = NWIT - 1

111 ”PRINT 1 LINE WITH K,L,I,A(1,1),B(1,1),NW1T,PROUND(I+10,1) THUS
112 "REP=#%%* PRI=% [=%*x W=1 A=#+% B=#*%* NWl=#*x PROUND=x##*x
113 ALWAYS "NWIT

114 GO TO NEXTI

115 ELSE IF FPREF(I+10,2) = 1 AND ENGAGE(I) = 0
116 LET CROUND(I+10,1) = CROUND(I+10,1) + 1
117 IF NW2T > 0

118 LET PROUND(I+10,1) = PROUND(I+10,1) + 1
119 LET ENGAGE(I) = 1 '

120 LET ENGAGE( IPAIR(L,1) ) = 1

121 LET NW2T = NW2T - 1

122 ”PRINT 1 LINE WITH K,L,I,A(1,1),B(1,1),NW2T,PROUND(I+10,1) THUS
123 "REP=#*%* PRI=# I=#% W=1 A=#%% B=x%% NW2=uxx PROUND=x%*=*
124 ALWAYS "NW2T

125 GO TO NEXTI

126 ALWAYS "FPREF1 OR 2

127 ALWAYS "A=0, B(I,1)=1

128 IF A(1,2) = 0 AND B(I,2) > 0 AND FPREF(I+10,3) = 1 AND ENGAGE(I) = 0
129 LET CROUND(I+10,2) = CROUND(I+10,2) + 1

130 IF NW3T > 0

131 LET PROUND(I+10,2) = PROUND(I+10,2) + 1

132 LET ENGAGE(I) = 1

133 LET ENGAGE( IPAIR(L.2) ) = 1

134 LET NW3T = NW3T - 1

135 "PRINT 1 LINE WITH K,L,I,A(1,2),B(1,2), NW3T,PROUND(I+10,2) THUS
136 "REP=##%*x PRI=+ I=%*x W=2 A=#%+* B=x%x NW3=#%x PROUND=xx#«
137 ALWAYS "NW3T

138 GO TO NEXTI

139 ALWAYS *A=0, B(1,2)=1 AND FPREF3

140 'NEXTI’ LOOP "ON UNIT I AGGREGATE TARGET

141 ”
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142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

192
193

H-12

” SINGLE TARGETS I=1,10
FORI=1TO 10 DO
IF PRI(I) NE L GO TO NEXTII ALWAYS
IFALD) =1 "SINGLE TARGET
IF FPREF(I,1) = 1 AND ENGAGE(I) =0
LET CROUND(I,1) = CROUND(I,1) + 1
IF NWIT > 0
LET PROUND(I,1) = PROUND(I,1) + 1
LET NWIT = NW1T -1
”PRINT 1 LINE WITH K,L,LLA(1,1),B(I,1),NW1T,PROUND(I,1) THUS
"REP=x%*%x* PRI=x I=#%x W=1 A=x%*x B=#%*x NWl=%%%x PROUND=x%x*x*
ALWAYS ”NWIT
GO TO NEXTII
ELSE IF FPREF(1,2) =1 AND ENGAGE(I) =0
LET CROUND(I,1) = CROUND(I,1) + 1
IF NW2T > 0
LET PROUND(L1) = PROUND(L1) + 1
LET NW2T = NW2T - 1
“PRINT 1 LINE WITH K,L,I,A(L,1),B(1,1),NW2T,PROUND(I,1) THUS
"REP=#*** PRI=% I=#% W=1 A=x%%*x Bz=#** NW2=%x* PROUND=x%xx*
ALWAYS "NW2T
GO TO NEXTII
ALWAYS "FPREFI1 OR 2
ALWAYS "A(Ill) =1
IF A(I,2) = 1 AND FPREF(1,3) = 1 AND ENGAGE(]) =
LET CROUND(I,2) = CROUND(L,2) + 1
IF NW3T > 0
LET PROUND(I,2) = PROUND(I,2) + 1
LET NW3T = NW3T - 1
“"PRINT 1 LINE WITH K,L,I,A(I,?),B(I,?.),NW3T,PROUND(I,2) THUS
Y"REP=##*x PRI=x I=#x W=2 A=sxx* B=#** NW3=xxx PROUND=x#*x
ALWAYS "NW3T
GO TO NEXTII
ALWAYS ”A(1,2) AND FPREF3
'NEXTII’ LOOP ”ON UNIT I SINGLE TARGET
LOOP ”ON PRIORITY L

FORI=1TO 10 DO "REINITIALIZE CONTROL VARS FOR NEXT REP
FOR W = 1 TO 2 DO
LET A(LW) = 0
LET B(LW) = 0
LET ENGAGE(I) = 0
LOOP
LOOP

LET NWIT = NW1 * REINITIALIZE ROUNDS FOR NEXT REP
LET NW2T = NW2
LET NW3T = NW3
LOOP"ONK=1TON
PRINT 1 LINE WITH N THUS
FOR #»#*#2x REPLICATIONS, AVERAGES ARE:
FORI1=1TO 10 DO

PRINT 1 LINE WITH I,CA(I,1)/N,I,PSINGLE(I,1).1,CA(I,2) /NI PSINGLE(I, 2) THUS

A(»#,1) = 2250 PA(#%,2) = x.422 A(#%,2) = s.xxx  PA(*%,2) = %.v4x
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195 PRINT 1 LINE WITH [,CB(1,1)/N,I,PAGGR(I,1),I,CB(1,2)/N,I,PAGGR(I,2) THUS
B(#x,1) = *.%%x PB(*%,1) = %.%xx  B(*%,2) = #x.x%x  PB(*%,2) = #.xxx
197 LOOP
198 PRINT 1 LINE THUS
SINGLE TARGETS:
200 FORI=1TO 10 DO
201 FORW =1TO 2DO
202 IF CROUND(LW) =0

203 IF PROUND(I,W) NE 0

204 PRINT 1 LINE WITH LLW,PROUND(I,W), [, W,CROUND(I,W) THUS

--—-ERROR-—— PROUND(**,x)= xxx CROUND(#x,%)= #%x

206 ALWAYS

207 LET CROUND(LLW) =1

208 ALWAYS

209 LOOP

210 PRINT 1 LINE WITH [LPROUND(I,1)/CROUND(I,1),, PROUND(I,2)/CROUND(I,2)
THUS

PROUND(*#,1) = *.#xx PROUND(*%,2) = #.%%x
212 LOOP

213 PRINT 2 LINES THUS

AGGREGATE TARGETS:
216 FORI=1TO 10 DO
217 FOR W =1TO 2 DO
218 IF CROUND(I1+10,W) =0

219 IF PROUND(I+10,W) NE 0

220 PRINT 1 LINE WITH I+10,W,PROUND(I+10,W), I+10,W,CROUND(I+10,W) THUS
—ERROR—— PROUND(##,x)= sx%¥x CROUND(x#,%)= #%x*

222 ALWAYS

223 LET CROUND(I+10,W) = 1

224 ALWAYS

225 LOOP
226 PRINT 1 LINE WITH LIPAIR(I,1),PROUND(I+10,1)/CROUND(I+10,1),
227 LLIPAIR(1,2),PROUND(I+10,2)/CROUND(I+10,2) THUS

PROUND(#*,%*) = *.4%x PROUND(#*,%%) = *. %%

229 LOOP
230 END

Input Data

WEAPON # 1:
PSINGLE( 1,1) = .129 FORJ = 2, PAGGR(1,1) = .048
PSINGLE( 2,1) = .263 FORJ = 3, PAGGR(2,1)= .108
PSINGLE( 3,1) = .353 FORJ = 2, PAGGR(3,1) = .108
PSINGLE( 4,1) = .218 FORJ = 3, PAGGR(4,1) = .114
PSINGLE( 5,1) = .326 FORJ = 6, PAGGR(5,1) = .286
PSINGLE( 6,1) = 448 FORJ = 7, PAGGR(6,1)= .119
PSINGLE( 7,1) = .388 FORJ = 6, PAGGR(7,1)= .119
PSINGLE( 8,1) = .128 FORJ = 7, PAGGR(8,1) = .044
PSINGLE( 9,1) = .234 FORJ = 3, PAGGR(9,1) = .038

PSINGLE(10,1) = .200FOR J =10, PAGGR(10,1) =0.
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WEAPON # 2:

PSINGLE( 1,2) = .080 FORJ = 2, PAGGR( 1,2) = .045
PSINGLE( 2,2) = .164 FORJ = 3, PAGGR(22)= .132
PSINGLE( 3,2) = .323 FORJ = 2, PAGGR(3,2) = .132
PSINGLE( 4,2) = .135 FORJ = 3, PAGGR(4,2) = .142
PSINGLE( 5,2) = .195 FORJ = 6, PAGGR(5,2) = .242
PSINGLE( 6,2) = .313 FORJ = 7, PAGGR(6,2) = .210
PSINGLE( 7,2) = .274 FORJ = 6, PAGGR(7.2) = .210
PSINGLE( 8,2) = .052 FORJ = 7, PAGGR(8,2) = .072
PSINGLE( 9,2) = .169 FORJ = 6, PAGGR(9,2) = .045
PSINGLE(10,2) = .200FOR J = 10, PAGGR(10,2) = 0.

FPREF( 1,1) = 1 FPREF(1,2) = 1 FPREF( 1,3) = 0
FPREF( 2,1) = 1 FPREF(22)= 1 FPREF( 2,3) = 0
FPREF( 3,1) = 0 FPREF( 3,2) = 1 FPREF( 3,3) = 0
FPREF(4,1) = 1 FPREF( 4.2) = 0 FPREF( 4,3) = 1
FPREF( 5,1) = 1 FPREF( 5,2) = 1 FPREF( 5,3) = 1
FPREF( 6,1) = 0 FPREF( 6,2) = 1 FPREF( 6,3) = 1
FPREF( 7,1) = 0 FPREF( 7.2) = 0 FPREF(7.3) = 1
FPREF( 8,1) = 1 FPREF( 82) = 1 FPREF( 8,3) = 1
FPREF( 9.1) = 0 FPREF( 9,2) = 1 FPREF( 9.3) = 1
FPREF(10,])= 0  FPREF(10,2) = 0 FPREF(10,3) = 1
FPREF(11,2,1) = 1 FPREF(I1,22) = 1 FPREF(11, 2,3) =
FPREF(12,3,1) = 0 FPREF(12,3,2) = 1 FPREF(12, 3,3) =
FPREF(13,2,1) = 0 FPREF(13,22)= 1 FPREF(13, 2,3) =
FPREF(14, 3,1) = 0 FPREF(14,3,2) = 0 FPREF(14, 3,3) =
FPREF(15, 6,1) = 0 FPREF(15,6,2) = 1 FPREF(15, 6,3) =
FPREF(16,7,1) = 0 FPREF(16,7,2) = 0 FPREF(16, 7,3) =
FPREF(17, 6,1) = 0 FPREF(17,6.2) = 0 FPREF(17, 6,3) =
FPREF(18,7,1) = 0 FPREF(18,7,2) = 0 FPREF(18, 7,3) =
FPREF(19, 3,1) = 0 FPREF(19,3,2) = 1 FPREF(19, 6,3) =
FPREF(20,10,1) = 0 FPREF(20,10,2)= 0  FPREF(20,10,3) =
PRI(1)= 3 PRIK11)= 3

PRI(2)= 3 PRI(12) = 3

PRI(3)= 3 PRI(13)= 3

PRI(4) = 2 PRI(14) = 3

PRI(5)= 2 PRI(15) = 2

PRI(6)= 2 PRI(16) = 2

PRI(7)= 2 PRI(I7) = 2

PRI(8) = 2 PRI(18) = 2

PRI(9)= 2 PRI(19) = 2

PRI(10) = 1 PRI(20) = 1
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Output

FOR 5000 REPLICATIONS, AVERAGES ARE:

A(1,1) = .130
B(1,1) = .052
A(2,1) = .255
B( 2,1) = .107
A(3,1) = .359
B(3,1) = .113
A(4,1) = 217
B( 4,1) = .115
A(51) = .325
B( 5,1) = .290
A(6,1) = .448
B( 6,1) = .121
A(T,1) = .390
B(7,1) = .116
A(8,1) = .126
B( 8,1) = .042
A(9,1) = .242
B( 9,1) = .031
A(10,1) = .201
B(10,1) = 0.
(1) Run #1

PA( 1,2)
PB( 1,1)
PA( 2,2)
PB( 2,1)
PA( 3,2)
PB( 3,1)
PA( 4,2)
PB( 4,1)
PA( 5,2
PB( 5,1)

)

PA( 6,2)
PB( 6.1)
PA( 7,2
PB( 7,1)
PA( 8,2
PB( 8,1
PA( 9,
PB( 9,1)
PA(10,2)

)
)
)
2)

T L I T o {1

PB(10,1) = 0.

WEAPONS AVAILABLE:

1 KT, FIRE UNIT 1 :

SINGLE TARGETS:

PROUND( 1,1) = .498
PROUND( 2,1) = .434
PROUND( 3,1) = .368

PROUND( 4,1) = 1.000

PROUND( 5,1) = .807
PROUND( 6,1) = .974
PROUND( 7,1) = 0.

PROUND( 8,1) = .565
PROUND( 9,1) = .528

PROUND(10,1) = 0.

1 1KT,FIREUNIT2: 1

AGGREGATE TARGETS:

PROUND( 1, 2) =
PROUND( 2, 3)
PROUND( 3, 2
PROUND( 4, 3
PROUND( 5, 6
PROUND( 6, 7
PROUND( 7, 6

7

3

10

.544
.368
.369

OOOHO

PROUND( 8,
PROUND( 9,
PROUND(10,

) 0
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"SHOWN TO ESTABLISH HOW CLOSE THE

REPLICATIONS ARE TO THE THEORETICAL RESULT

129 A(L,2) = .076
048  B(1,2) = .045
263 A(22) = .170
108 B(22) = .135
353 A(3,2) = .305
108 B(3,2) = .140
218 A(4,2) = .139
114 B(4,2) = .138
326 A(52)= .191
286  B(52) = .247
448  A(6,2) = .317
119 B(6,2) = .206
388 A(T7.2) = .266
119 B(7.2) = .210
128 A(82) = .052
044  B(8,2) = .076
234 A(9,2) = .162
038  B(9,2) = .043
200 A(10,2) = .201
B(10,2) = 0.

PROUND( 1,2) = 0.
PROUND( 2,2) = 0.
PROUND( 3,2) = 0.

PROUND( 4,2) = .384
PROUND( 5,2) = .377
PROUND( 6,2) = .454
PROUND( 7,2) = .420
PROUND( 8.2) = .199
PROUND( 9,2) = .176

PROUND(10.2) = 1.000

PROUND( 1, 2) = 0.
PROUND( 2, 3) =

PROUND( 3, 2) = 0.
PROUND( 4, 3) = 0.
PROUND( 5, 6) = .788
PROUND( 6, 7) = .790
PROUND( 7, 6) = .629
PROUND( 8, 7) = .454
PROUND( 9, 6) = .430
PROUND(10,10) = 0.

PA( 1,
PB( 1,
PA( 2,
PB( 2
PA( 3,
PB(
PA(
PB(
PA(
PB(
PA(
PB(
PA(
PB(
PA(
PB(
PA(
PB( ¢
PA(10,
PB(10,:

Cadiadi

h

1

1

)

1

4

1

1

)

[}

’

v

.Dtoooooxlqc)cﬁcnm.h.h
‘VIQIQIQMIVKQIQ(\’)IQKO(QI‘3I\DI\9I\DI°I\DMM

10 KT, FIRE UNIT 3 :

e et N e N Nt S e N e e N N N e et S s

e

1

.080
.045
.164
132
323
132
135
.142
.195
.242
313
210
274
.210
.052
072
.169
.045

700
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(2) Run #2

WEAPONS AVAILABLE:
1 KT, FIREUNIT1: 2

SINGLE TARGETS:

PROUND( 1,1) = .
PROUND( 2.1) = 353
PROUND( 3,1) = .878

PROUND( 4,1) = 1.000
PROUND( %,1) = 1.000
PROUND( 6,1) = 1.000
PROUNT 7,1) = 0.

PROULD( 8,1) = .954
PROUND( 9,1) = 1.000
PROUND(10,1) = 0.

1 KT, FIRE UNIT 2: 2

PROUND( 1,2) = 0.
PROLND( 2,2) = 0.
PPOUND( 3,2) = 0.

PROUND( 4,2) = .835
PROUND( 5,2) = .850
PROUND( 6,2) = .895
PROUND( 7,2) = .854
PROUND( 8,2) = .665
PROUND( 9,2) = .632
PROUND(10,2) = 1.000

AGGREGATE TARGETS:

PROUND( 1, 2) = .873
PROUND( 2, 3) = .860
PROUND( 3, 2) == .876

PROUND( 4, 3) = 0.
PROUND( 5, 6) = 1.000
PROUND( 6, 7) = 0.
PROUND( 7, 6) = 0.
PROUND( 8, 7) = 0.
PROUND( 9, 3) = 1.000
PROUND(10.10) = 0.

(3) Run #3

WEAPONS AVAILABLE:
1 KT, FIRE UNIT 1: 4

SINGLE TARGETS:

PROUND( 1,1} = 1.000
PROUND( 2,1) = .998
PROUND( 3,1) = .878

PROUND( 4,1) = 1.000
PROUND( 5,1) = 1.000
PROUND( 6,1) = 1.000
PROUND; 7,1) = 0.

PROUND( 8,1) = 1.000
PROUND( 9,1) = 1.000
PROUND(10,1) = 0.

H-16

PROUND( 1, 2) = 0.
PROUND( 2, 3) = 0.
PROUND( 3, 2) = 0.
PROUND( 4, 3) = 0.
PROUND( 5, 6) = 1.000
PROUND( 6, 7) = 1.000

PROUND( 7, 6) = .950
PROUND( 8, 7) = .887
PROUND( 9, 6) = .821

PROUND(10,10) = 0.

1 KT, FIRE UNIT 2: 2

PROUND( 1,2) = 0.
PROUND( 2,2) = 0.
PROUND( 3,2) = 0.
PROUND( 4,2) = 1.000
PROUND( 5,2) = 1.000

PROUND( 6,2) = .997
PROUND( 7,2) = .999
PROUND( 8,2) = .986
PROUND( 9,2) = .986

PROUND(10,2) = 1.000

10 KT, FIRE UNIT 3 :

10 KT, FIRE UNIT 3 :

2

4
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AGGREGATE TARGETS:

PROUND( 1, 2) = PROUND( 1, 2) =
PROUND( 2, 3) = PROUND( 2, 3) =
PROUND( 3, 2) = PROUND( 3, 2) =
PROUND( 4, 3) = o PROUND( 4, 3) =
PROUND( 5, 6) = 1.000 PROUND( 5 6) = 1.000
PROUND( 6, 7) = 0. PROUND( 6, 7) = 1.000
PROUND( 7, 6) = 0. PROUND( 7, 6) = 1.000
PROUND( 8, 7) = 0. PROUND( 8, 7) = 1.000
PROUND( 9, 3):1 000 PROUND( 9, 6) = 1.6J0
PROUND(10,10) = 0 PROUND(10,10) = 0.

Section IV - CALCULATING PROBABILITIES OF ENGAGEMENT AND DEFEAT
Probabilities of Engagement

Recall the following definitions:
Pengage( 8 w) =p, (1) - pslnft( ilwoa,a99;) - Pager( ilw a; ) - P gl wla;)
= Pengage( . s|w) - Proundl wla;)
Pengage( 1,3, w) = p,,..,(1) - P, ,;.;ﬁ(i| w, a;,099;) - Pager( t|w, a;) - Pryyaa( Wi
= Pengage( 1,5 | W) + Poyna( @l a,-)
Pengage( t, W) = Pengage( i W) - Pooyqqg( wla;
Pcngage( y,s.w) = Pa,,au( 1) - Pa,,a,I( N P,h,ﬂ lJl w, au,aggu) : Paggr( | w, a;; ) - Pmund( wl ‘1,])
= Pengage( 4, 5| W) - Proyaqg( wlay
Pengage( 11,5 W) = Puyait( ) * Puait(3) © Pro shipt( 0 w1 85, 899,) - Paggr( 7w, a;; )
" Prouna{ Wla;)
= Pengage( 1,5 fw) - P,-ound( w| a; )
Pengage( Uy W) = Pengage( W) « Pryyng( wlay)
In this case, the values PROUND( I, W ) from the Monte Carlo estimation equal p_ . .(wfa;) and

the values PROUND( I, J, W ) from the Monte Carlo estimation equal p_ . .( w| a;)
Run #1

Unit 1 2 3 4 5 6 7T 8 9 10
Pengagel 43.w,) | .043 .076 .086 .109 .175 .272 0  .054 .069 O

Pengage( 1,3, w; ) .021 .038 .043 .109 .088 .164 O 018 .055 0
Pengage( 1,73, wy) 0 0 0 .023 .066 .032 .029 .006 .005 .130
Pengage( 1.8, wy) 0 0 0 .020 .041 022 .021 .002 .002 .020
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Unit 1 2 3 4 5 6 7 8 9 10
Pengage( 1,3, wy) 013 .026 .027 O 176 0 0 0 016 0
Pengage( i, 5, w;) 013 .013 .013 O 110 0 0 0 008 O
Pengage( i3, wy) 0 0 0 0 .087 .077 .062 .015 .006 0
Pengage{ i, 5, wy) 0 0 0 0 110 .098 .098 .032 .015 O

Run #2

Unit 1 2 3 4 5 6 7 8 9 10
Pengage( 4,3, w;) 079 .149 .206 .109 .217 .280 O 092 .130 0
Dengage( I, 8, W, ) 040 075 .104 .109 .109 .168 O 031 104 0
Pengage( 1.5, w;) 0 0 0 .061 .150 .063 .060 .021 .017 .180
Pengage( 1,8, wy) 0 0 0 044 094 .044 .042 .008 .007 .020

Unit 1 2 3 4 5 6 7 8 9 10
Pengages 1,3, W;) 021 062 .063 O 176 0 0 0 023 0
Pengage( 11,5, w;) 023 031 .032 O 110 0 0 0 O11 0
Pengage( 1,5, w;) 0 0 0 0 110 .098 .093 028 .012 O
Pengage( 1, 5, wy) 0 0 0 0 132,112 .106 .035 .025 O

Run #3

Unit 1 2 3 4 5 6 7 8 9 10
Pengagef 4,3, w)) .086 .175 .206 .109 .217 .280 O 096 .130 O
Pengage( 1,8, Wy ) .043 .088 .104 .109 .109 .168 0 032 .104 0O
Pengage( 1,5, w;) 0 0 0 .061 .176 .070 .070 .032 .027 .180
Pengage( 1 5 W) ¢ 0 0 .053 .110 .049 .049 .012 .011 .020

Unit 1 2 3 4 5 6 7 8 9 10
Pengage( 1,5 w,;) | .024 062 63 0 .76 0 0 0 023 0
Pengage( 1, 8w, ) .024 .031 .032 0 110 0 0 0 011 0
Pengage( 1,5, w;) 0 0 0 0 110 098 .098 .032 .015 O
Pengage( 37,8, w,) 0 0 0 0 JA32 0 112 112 040 030 O
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Probabilities of Defeat

Recall the following definitions:
pdefcat(i’ w)
= pdefeat(i | w, a;, S a?!l,‘) * Pengage( 1, 8w ) + pdefeat(i | w, a;, s, ‘179,') : Pengage( LS, w)
+ pdefcat(i I w, a,’ja S, aggu) : Pengaye( lJ’ S, w ) + pdcfcat(i | w, a,’j! ?, agyu) : pc'ng'l.gC( 1.].,?, w )

pdc/eat(” = zw: pdcfeat(i’ w)

Suppose we have the following conditional probabilities of defeat:

Unit 1 2 3 4 5 6 71 8 9 10
Paceat( ilwp¥,... |75 75 .75 65 .65 .65 .65 .70 .70 -
Pacfeat( Hlwps... |40 .50 .60 .35 .40 45 .60 .35 .50 -
Pacfeat( ilwp S, | .90 .90 .90 .80 .80 80 .80 .85 .85 1.0
Pacfest( il Wgrs,... | .55 40 .50 40 45 .55 .70 .30 .55 .60

Unit 1 2 3 4 5 6 7 8 9 10
Piefear( il wpS,... | .60 .55 .35 .50 .55 .45 45 .55 .50 -
Picjear( Wlwpsy... |25 .30 .30 .20 .25 .35 .35 .20 .25 -
Picfoat Wlw23,... | .70 65 .65 60 .70 .65 .65 .70 .70 -
Piefeat Hlwpsi... |16 .25 .25 .25 .35 .25 .25 40 .35 -

Thus for run #1,

Paeseat( L w1) = (:043)(.75) + (.021)(-40) + (.013)(.60) + (.013)(.25) = .052, etc.

Unit |1 2 3 4 5 6 7 8 9 10
Pefeat! #wy) Run 1] 056 096 .110 .109 .295 .251 0  .044 .088 0
Paefeat( ;) Run 2| 099 196 .268 .109 .331 .258 0  .075 .161 O
Paefeat( bwy) Run 3| 109 222 268 .109 .331 .258 0 078 .161 O
Paefeat Ww)RUD Il 0 0 0 026 .169 .110 .096 .023 014 .192
Piefeas bw) RUN2l 0 0 0 058 .290 .166 .164 .054 .035 .192
Paicfear bw) Run3| 0 0 0 070 319 175 .182 .069 .050 .192
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This yields the following values for p,,;,,,(1):

Uit |1 2 38 4 5 6 T 8 9 10
Paefea( 1) Run1 | 056 .096 .110 .135 .464 .361 .096 .067 .102 .192
Paefearl i) Run2 | .099 .196 268 .167 .621 .424 .164 .129 .196 .192

109 222 268 179 .650 .433 .182 .147 211 .192

pdefeat( i) Run 3
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